Human serum albumin interactions with C60 fullerene studied by spectroscopy, small-angle neutron scattering, and molecular dynamics simulations
详细信息    查看全文
  • 作者:Song Li (1)
    Xiongce Zhao (2) (6)
    Yiming Mo (3) (4) (7)
    Peter T. Cummings (1) (2)
    William T. Heller (3) (4) (5)
  • 关键词:Fullerene ; Serum albumin ; Nanotoxicity ; Small ; angle neutron scattering ; Molecular dynamics simulation
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:15
  • 期:7
  • 全文大小:516KB
  • 参考文献:1. Andrade MA, Chacon P, Merelo JJ, Moran F (1993) Evaluation of secondary structure of proteins from UV circular-dichroism spectra using an unsupervised learning neural-network. Protein Eng 6(4):383-90 CrossRef
    2. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364(1-):8-7 CrossRef
    3. Baati T, Bourasset F, Gharbi N, Njim L, Abderrabba M, Kerkeni A, Szwarc H, Moussa F (2012) The prolongation of the lifespan of rats by repeated oral administration of [C60] fullerene. Biomaterials 33(19):4936-946 CrossRef
    4. Baker GA, Heller WT (2009) Small-angle neutron scattering studies of model protein denaturation in aqueous solutions of the ionic liquid 1-butyl-3-methylimidazolium chloride. Chem Eng J 147(1):6-2. doi:10.1016/j.cej.2008.11.033 CrossRef
    5. Belgorodsky B, Fadeev L, Ittah V, Benyamini H, Zelner S, Huppert D, Kotlyar AB, Gozin M (2005) Formation and characterization of stable human serum albumin—tris-malonic acid [C60]fullerene complex. Bioconjugate Chem 16(5):1058-062. doi:10.1021/bc050103c CrossRef
    6. Belgorodsky B, Fadeev L, Kolsenik J, Gozin M (2007) Biodelivery of a fullerene derivative. Bioconjugate Chem 18(4):1095-100. doi:10.1021/bc060363+ CrossRef
    7. Benyamini H, Shulman-Peleg A, Wolfson HJ, Belgorodsky B, Fadeev L, Gozin M (2006) Interaction of C60–fullerene and carboxyfullerene with proteins: a docking and binding site alignment. Bioconjugate Chem 17(2):378-86. doi:10.1021/bc050299g CrossRef
    8. Bhattacharya AA, Grune T, Curry S (2000) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol 303(5):721-32. doi:10.1006/jmbi.2000.4158 CrossRef
    9. Bosi S, Da Ros T, Spalluto G, Balzarini J, Prato M (2003a) Synthesis and anti-HIV properties of new water-soluble bis-functionalized [C60] fullerene derivatives. Bioorg Med Chem Lett 13(24):4437-440. doi:10.1016/j.bmcl.2003.09.016 CrossRef
    10. Bosi S, Da Ros T, Spalluto G, Prato M (2003b) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11-2):913-23. doi:10.1016/j.ejmech.2003.09.005 CrossRef
    11. Chang CT, Wu CSC, Yang JT (1978) Circular dichroic analysis of protein conformation—inclusion of beta-turns. Anal Biochem 91(1):13-1 CrossRef
    12. Chatterjee T, Pal A, Dey S, Chatterjee BK, Chakrabarti P (2012) Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling. PLoS One 7(5):e37468. doi:10.1371/journal.pone.0037468 CrossRef
    13. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1996) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). J Am Chem Soc 118(9):2309 CrossRef
    14. Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5(9):827-35. doi:10.1038/1869 CrossRef
    15. Darden T, York D, Pederson L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089 CrossRef
    16. Dhawan A, Taurozzi JS, Pandey AK, Shan WQ, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C-60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394-401. doi:10.1021/es0609708 CrossRef
    17. Dockal M, Carter DC, Ruker F (2000) Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275(5):3042-050 CrossRef
    18. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Guigo R, Gusfield D (eds) Algorithms in Bioinformatics, Proceedings, vol 2452. Lecture Notes in Computer Science. pp 185-00
    19. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C-60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307-316. doi:10.1021/es0498099n CrossRef
    20. Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL (1993a) Bucky-ball based inhibitors of the HIV protease-nd-generation design and model studies. FASEB J 7(7):A1184
    21. Friedman SH, Decamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL (1993b) Inhibition of the HIV-1 protease by fullerene derivatives—model-building studies and experimental verification. J Am Chem Soc 115(15):6506-509 CrossRef
    22. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [C60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5(12):2578-585. doi:10.1021/nl051866b CrossRef
    23. Guinier A, Fournet G (1955) Small-angle Scattering of X-rays. Wiley, New York
    24. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502. doi:10.1093/nar/gkh429 CrossRef
    25. Heller WT (2013) Comparison of the thermal denaturing of human serum albumin in the presence of guanidine hydrochloride and 1-butyl-3-methylimidazolium ionic liquids. J Phys Chem B 117(8):2378-383. doi:10.1021/jp400079p CrossRef
    26. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60—buckminsterfullerene. Nature 318(6042):162-63 CrossRef
    27. Liu SF, Sui Y, Guo K, Yin ZJ, Gao XB (2012) Spectroscopic study on the interaction of pristine C-60 and serum albumins in solution. Nanoscale Res Lett 7 7(1):433. doi:10.1186/1556-276x-7-433 CrossRef
    28. Lynn GW, Heller W, Urban V, Wignall GD, Weiss K, Myles DAA (2006) Bio-SANS—a dedicated facility for neutron structural biology at oak ridge national laboratory. Phys B 385-6:880-82. doi:10.1016/j.physb.2006.05.133 CrossRef
    29. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594. doi:10.1093/nar/gkh477 CrossRef
    30. Makarova EG, Gordon RY, Podolski IY (2012) Fullerene C60 prevents neurotoxicity induced by intrahippocampal microinjection of amyloid-beta peptide. J Nanosci Nanotechnol 12(1):119-26 CrossRef
    31. Mrdanovic JZ, ?Solavic SV, Bogdanovic VV, Djordjevic AN, Bogdanovic GM, Injac RD, Rakocevic ZL (2012) Effects of fullerenol nano particles C60(OH)24 on micronuclei and chromosomal aberrations’s frequency in peripheral blood lymphocytes. Dig J Nanomater and Bios 7(2):673-86
    32. Nelson MA, Domann FE, Bowden GT, Hooser SB, Fernando Q, Carter DE (1993) Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health 9(4):623-30
    33. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058-062. doi:10.1289/ehp.7021 CrossRef
    34. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781-802. doi:10.1002/Jcc.20289 CrossRef
    35. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40(10):2262-265
    36. Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, Schoenberger H, Hirsch A, Moussa F (2002) Cytotoxicity and photocytotoxicity of a dendritic C-60 mono-adduct and a malonic acid C-60 tris-adduct on Jurkat cells. J Photochem Photobiol B 67(3):157-62 CrossRef
    37. Raoof M, Mackeyev Y, Cheney MA, Wilson LJ, Curley SA (2012) Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials 33(10):2952-960 CrossRef
    38. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of / n-alkanes. J Comput Phys 23:327 CrossRef
    39. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881-887. doi:10.1021/nl0489586 CrossRef
    40. Schinazi RF, Sijbesma R, Srdanov G, Hill CL, Wudl F (1993) Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob Agents Chemother 37(8):1707-710 CrossRef
    41. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. doi:10.1093/nar/gki481 CrossRef
    42. Scrivens WA, Tour JM, Creek KE, Pirisi L (1994) Synthesis of C-14-labeled C-60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc 116(10):4517-518 CrossRef
    43. Sijbesma R, Srdanov G, Wudl F, Castoro JA, Wilkins C, Friedman SH, Decamp DL, Kenyon GL (1993) Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc 115(15):6510-512 CrossRef
    44. Sitharaman B, Zakharian TY, Saraf A, Misra P, Ashcroft J, Pan S, Pham QP, Mikos AG, Wilson LJ, Engler DA (2008) Water-soluble fullerene (C-60) derivatives as nonviral gene-delivery vectors. Mol Pharm 5(4):567-78. doi:10.1021/mp700106w CrossRef
    45. Song MY, Liu SF, Yin JF, Wang HL (2011) Interaction of human serum album and C-60 aggregates in solution. Int J Mol Sci 12(8):4964-974. doi:10.3390/ijms12084964 CrossRef
    46. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Crystal structure of human serum albumin at 2.5 angstrom resolution. Protein Eng 12(6):439-46 CrossRef
    47. Svergun DI (1992) Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria. J Appl Crystallogr 25:495-03 CrossRef
    48. Tjioe E, Heller WT (2007) ORNL_SAS: software for calculation of small-angle scattering intensities of proteins and protein complexes. J Appl Crystallogr 40:782-85. doi:10.1107/s002188980702420x CrossRef
    49. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y (1993) Photoinduced Biochemical-Activity of Fullerene Carboxylic-Acid. J Am Chem Soc 115(17):7918-919 CrossRef
    50. Using nanotechnology: What must be done, (Consumer Reports, 2007). http://wwwconsumerreportsorg/cro/health/conditions-and-treatments/nanotechnology-7-07/what-must-be-done/0707_nano_what_1htm
    51. Wu H, Lin LN, Wang P, Jiang SS, Dai Z, Zou XY (2011) Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application. Chem Commun 47(38):10659-0661. doi:10.1039/c1cc13953c CrossRef
    52. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794-807. doi:10.1021/nl061025k CrossRef
    53. Xu X, Wang X, Li Y, Wang Y, Yang L (2012) A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA. Nucleic Acids Res. doi:10.1093/nar/gks517
    54. Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F (1995) In-vivo biological behavior of a water-miscible fullerene - C-14 labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2(6):385-89 CrossRef
    55. Yamakoshi YN, Yagami T, Fukuhara K, Sueyoshi S, Miyata N (1994) Solubilization of Fullerenes into Water with Polyvinylpyrrolidone Applicable to Biological Tests. J Chem Soc-Chem Commun 4:517-18 CrossRef
    56. Zhao XC (2008) Interaction of C-60 derivatives and ssDNA from simulations. J Phys Chem C 112(24):8898-906. doi:10.1021/jp801180w CrossRef
    57. Zhao XC, Striolo A, Cummings PT (2005) C-60 binds to and deforms nucleotides. Biophys J 89(6):3856-862. doi:10.1529/biophysj.105.064410 CrossRef
  • 作者单位:Song Li (1)
    Xiongce Zhao (2) (6)
    Yiming Mo (3) (4) (7)
    Peter T. Cummings (1) (2)
    William T. Heller (3) (4) (5)

    1. Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
    2. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
    6. NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
    3. Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
    4. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
    7. Institute of Agriculture, University of Tennessee, 109 McCord Hall, Knoxville, TN, 37996, USA
    5. Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
  • ISSN:1572-896X
文摘
Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C60 fullerene, continues to grow. While, evidence continues to mount that C60 and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. In this article, we report combined experimental and theoretical studies on the interaction of one of the most prevalent proteins in the human body, human serum albumin (HSA), with C60 in an aqueous environment. The C60–HSA interaction was probed by circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS), and atomistic molecular dynamics (MD) simulations to understand C60-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in α-helical content in response to the presence of C60 (0.68?nm in diameter). Similarly, C60 produces subtle changes in the solution conformation of HSA (an 8.0?nm?×?3.8?nm protein), as evidenced by the SANS data and MD simulations, but the data do not indicate that C60 changes the oligomerization state of the protein, such as by inducing aggregation. The results demonstrate that the interaction is not highly disruptive to the protein in a manner that would prevent it from performing its physiological function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700