Coseismic Fault Slip of the September 16, 2015 Mw 8.3 Illapel, Chile Earthquake Estimated from InSAR Data
详细信息    查看全文
  • 作者:Yingfeng Zhang ; Guohong Zhang ; Eric A. Hetland ; Xinjian Shan…
  • 关键词:The 2015 Illapel earthquake ; InSAR displacement ; coseismic slip model ; faults reactivation ; coulomb stress change
  • 刊名:Pure and Applied Geophysics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:173
  • 期:4
  • 页码:1029-1038
  • 全文大小:10,029 KB
  • 参考文献:Angermann D., Klotz J., Reigber C. (1999). Space-geodetic estimation of the Nazca-south America Euler vector. Earth planet. Sci. Lett., 171(3):329–334.
    Aron F., Cembrano J., Astudillo F., et al (2015). Constructing forearc architecture over megathrust seismic cycles: Geological snapshots from the Maule earthquake region, Chile, Geological Society of America Bulletin, 127(3–4):464–479
    Barrientos S.E, Ward , S.N. (1990). The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophys. J. Int., 103:589–598.
    Beck S.,Barrientons S.,Kausel E.(1998).Source characteristic of historic earthquakes along the central Chile subduction zone. J.S.Am.Earth Sci., 11(2):115–129
    Burke K. (1988).Tectonic evolution of the Caribbean, Annu. Rev. Earth Planet. Sci., 16, 201–230.
    Burgmann R., Kogan M.G., Steblov G.M., et al(2005), Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J.Geophys.Res., 110, B07405. doi:10.​1029/​2005JB003648
    Cembrano J., Lara L.E. (2009). The link between volcanism and tectonics in the Southern Volcanic Zone of the Chilean Andes: a review, Tectonophysics, 471: 96–113.
    Cisternas M., Atwater B.F., Torrejón F., et al. (2005). Predecessors of the giant 1960 Chile earthquake, Nature, 437, 404–407.
    Comte A.,Eisenberg E., Lorca , et al. (1986). The 1985 Central Chile Earthquake: A Repeat of Previous Great Earthquakes in the Region? Science, 233:449–452
    Contreras -López M., Winckler P., Sepúlveda I., et al.(2016). Field Survey of the 2015 Chile Tsunami with Emphasis on Coastal Wetland and Conservation Areas, Pure and Applied Geophysics,173(2):349–367
    Delouis B., Jean -Mathieu N., and Vallée M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high‐rate GPS, InSAR, and broadband teleseismic data, Geophysical Research Letters, 37, L17305. doi: 10.​1029/​2010GL043899 ,
    De Mets et al (1990).Current plate motions, Geophys. J. Int., 101:425–478
    Eisenberg A., Husid R., Luco J.E. (1972). The July 8, 1971 Chilean earthquake. Bull. Seismol. Soc. Am., 62(1):423–430
    Farías M., Comte D., Roecker S., et al (2011). Crustal extensional faulting triggered by the 2010 Chilean earthquake The Pichilemu Seismic Sequence. Tectonics, 30(6):453–453
    Farr T G., Rosen P A., Caro E., et al. (2000). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2):37–55.
    Feng , G., and Jónsson S. (2012), Shortcomings of InSAR for studying megathrust earthquakes: The case of the Mw9.0 Tohoku-Oki earthquake, Geophys. Res. Lett., 39, L10305. doi: 10.​1029/​2012GL051628
    Feng G.C., Li Z.W., Shan X.J., Xu B., Du Y.N. (2015). Source parameters of the 2014 Mw 6.1 South Napa earthquake estimated from the Sentinel 1A, COSMO-SkyMed and GPS data, Tectonophysics. doi:10.​1016/​j.​tecto.​2015.​05.​018 .
    Harris R. A. (1998). Introduction to special section: stress triggers, stress shadows, and implications for seismic hazard. J.Geophys.Res. 103(B10): 24347–24358
    Hansen P C.(1992).Analysis of discrete ill-posed problems by means of the L-curve,SIAM review, 34(4): 561–580.
    Khazaradze G., Klotz J. (2003). Short- and long-term effects of GPS measured crustal deformation rates along the south central Andes, J.Geophys.Res.108, B6. doi:10.​1029/​2002JB001879
    King G.C. P., Stein R.S., and Lin J. (1994). Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am., 84, 935–953.
    Kilb D., Comberg J., Bodin P. (2000). Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812):570–574
    Lange D., Tilmann F., Barrientos S.E., et al (2012).Aftershock seismicity of the 27 February 2010 Mw 8.8 Maule earthquake rupture zone, Earth and Planetary Science Letters, 317–318:413–425
    Laursen J., Scholl D.W, Huene R.V., et al (2002). Neotectonic deformation of the central Chile margin:Deepwater forearc basin formation in response to hot spot ridge and seamount subduction,Tectonics, 21(5), 1038. doi:10.​1029/​2001TC901023 , 2002
    Lin , J., and Stein R.S. (2004), Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults, J. Geophys. Res, 109, B02303. doi:10.​1029/​2003JB002607 .
    Moreno M., Rosenau M., Oncken O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467:198–201
    Moscoso E., Grevemeyer I.,Reyes R.C.,et al (2011). Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data, Earth and Planetary Science Letters, 307,147–155
    Murray J., Langbein , J. (2006). Slip on the San Andreas Fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard. Bull. Seismol. Soc.Am. 96, 282–303
    Nishenko ,Stuart P. (1985).Seismic potential for large and great interplate earthquakes along the Chilean and Southern Peruvian Margins of South America: A quantitative reappraisal, Journal of Geophysical Research Solid Earth, 1985, 90(B5):3589–3615
    Okada Y. (1992). Internal deformation due to shear and tensile fault in a half-space, Bull. Seism. Soc. Am., 82(2), 1018–1040
    Pardo -Casas F., Molnar P. (1987). Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous times, Tectonics, 6:233–248.
    Pardo M.,Comte D.,Monfret T., et al (2002). The October 15, 1997 Punitaqui earthquake (Mw = 7.1): A destructive event within the subducting Nazca plate in the Central Chile, Tectonophysics, 345(01):199–210
    Perfettini H., Avouac J.P. Tavera H., et al (2010). Seismic and aseismic slip on the Central Peru megathrust, Nature 465:78–81
    Pollitz F.F., Brooks B., Tong X.P., et al. (2011). Coseismal slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake, Geophysical Research Letters, 38:L09309. doi:10.​1029/​2011GL047065
    Savage J. C., Lisowski M. & Prescott W. H. (1986), Strain accumulation in the Shumagin and Yakataga seismic gaps, Alaska.Science 231:585–587
    Simons M., Fialko Y., Rivera L. (2002). Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations, Bull. Seismol. Soc. Am., 92, 1390–1402.
    Somoza R. (1998). Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for the mountain building in the central Andean region. J. S. Am. Earth Sci., 11:211–215.
    Tong X.P., Sandwell D., and Luttrell K., et al (2010).The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy, Geophysical Research Letters, 37, L24311
    Toda S., R. S. Stein , K. Richards -Dinger , et al (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, Journal of Geophysical Research, v. 110, B05S16. doi:10.​1029/​2004JB003415 .
    Vigny C., Socquet A., Peyrat S., et al (2011). The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS. Science, 332(17):1417–1421
    Wang R.J, Martínb F.L., Rotha F. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP. Computers & Geosciences, 29(2):195–207
    Watt S.F.L., Pyle D.M., Mather T.A. (2009). The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone, Earth planet. Sci. Lett., 277:399–407.
    Wegmüller U. & Werner C.L. (1997). Gamma SAR processor and interferometry software, in proceeding of the 3rd ERS Symposium, Eur. Space Agency Spec. Publ., ESA SP-414, 1686–1692.
    Wessel P., Smith W.H.F.(1998), new, improved version of the Generic Mapping Tools released, Eos Transactions American Geophysical Union, 1998, 79(47),579–579
    Werner C.,Wegmuller U.,Strozzi T.,Wiesmann A.(2002).Processing strategies for phase unwrapping for InSAR applications, in Proceedings of the EUSAR 2002, Cologne, 2002 June 4–6.
    Ye L.L., Lay T., Kanamori H., et al. (2015). Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake. Pure Appl. Geophys. doi:10.1007/s00024-015-1202-y
    Yuan X., Sobolev S.V., Kind R. (2002).Moho topography in the central Andes and its geodynamic implications. Earth planet. Sci. Lett., 199 (3-4):389–402.
    Zhang G. H., Qu C.Y., Shan X.J., et al (2011). Slip distribution of the 2008 Wenchuan Ms 7.9 earthquake by joint inversion from GPS and InSAR measurements: A resolution test study, Geophys. J. Int., 186, 207–220. doi:10.​1111/​j.​1365-246X.​2011.​05039.​x .
  • 作者单位:Yingfeng Zhang (1) (2)
    Guohong Zhang (1)
    Eric A. Hetland (3)
    Xinjian Shan (1)
    Shaoyan Wen (1) (4)
    Ronghu Zuo (1)

    1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing, 100029, China
    2. China University of Petroleum (East China), School of Geoscience, Qingdao, 266580, China
    3. Earth and Environmental Sciences, University of Michigan, Ann Arbor, 48109, USA
    4. Earthquake Administration of Xinjiang, Uygur Autonomous Region, Urumqi, 830002, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9136
文摘
The complete surface deformation of 2015 Mw 8.3 Illapel, Chile earthquake is obtained using SAR interferograms obtained for descending and ascending Sentinel-1 orbits. We find that the Illapel event is predominantly thrust, as expected for an earthquake on the interface between the Nazca and South America plates, with a slight right-lateral strike slip component. The maximum thrust-slip and right-lateral strike slip reach 8.3 and 1.5 m, respectively, both located at a depth of 8 km, northwest to the epicenter. The total estimated seismic moment is 3.28 × 1021 N.m, corresponding to a moment magnitude Mw 8.27. In our model, the rupture breaks all the way up to the sea-floor at the trench, which is consistent with the destructive tsunami following the earthquake. We also find the slip distribution correlates closely with previous estimates of interseismic locking distribution. We argue that positive coulomb stress changes caused by the Illapel earthquake may favor earthquakes on the extensional faults in this area. Finally, based on our inferred coseismic slip model and coulomb stress calculation, we envision that the subduction interface that last slipped in the 1922 Mw 8.4 Vallenar earthquake might be near the upper end of its seismic quiescence, and the earthquake potential in this region is urgent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700