Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation
详细信息    查看全文
  • 作者:Xiuju Song ; Junfeng Gao ; Yufeng Nie ; Teng Gao ; Jingyu Sun ; Donglin Ma…
  • 关键词:hexagonal boron nitride ; Cu foil ; domain size ; orientation ; chemical vapor deposition (CVD)
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:8
  • 期:10
  • 页码:3164-3176
  • 全文大小:3,003 KB
  • 参考文献:[1]Novoselov, K. S; Geim, A. K; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V; Grigorieva, I. V; Firsov, A. A Electric field effect in atomically thin carbon films. Science 2004, 306, 666-69.CrossRef
    [2]Huang, X.; Qi, X. Y; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-86.CrossRef
    [3]Huang, X.; Yin, Z. Y; Wu, S. X; Qi, X. Y; He, Q. Y; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876-902.CrossRef
    [4]Gao, T.; Song, X. J; Du, H. W; Nie, Y. F; Chen, Y. B; Ji, Q. Q; Sun, J. Y; Yang, Y. L; Zhang, Y. F; Liu, Z. F Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6. 6835.CrossRef
    [5]Hunt, B.; Sanchez Yamagishi, J. D; Young, A. F; Yankowitz, M.; LeRoy, B. J; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals heterostructure. Science 2013, 340, 1427-430.CrossRef
    [6]Yang, W.; Chen, G. R; Shi, Z. W; Liu, C. C; Zhang, L. C; Xie, G. B; Cheng, M.; Wang, D. M; Yang, R.; Shi, D. X et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-97.CrossRef
    [7]Levendorf, M. P; Kim, C. J; Brown, L.; Huang, P. Y; Havener, R. W; Muller, D. A; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-32.CrossRef
    [8]Liu, Z.; Ma, L. L; Shi, G.; Zhou, W.; Gong, Y. J; Lei, S. D; Yang, X. B; Zhang, J. N; Yu, J. J; Hackenberg, K. P et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 2013, 8, 119-24.CrossRef
    [9]Wang, M.; Jang, S. K; Jang, W. J; Kim, M.; Park, S. Y; Kim, S. W; Kahng, S. J; Choi, J. Y; Ruoff, R. S; Song, Y. J et al. A platform for large-scale graphene electronics–CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746-752.CrossRef
    [10]Zhang, C. H; Zhao, S. L; Jin, C. H; Koh, A. L; Zhou, Y.; Xu, W. G; Li, Q. C; Xiong, Q. H; Peng, H. L; Liu, Z. F Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat. Commun. 2015, 6, 6519.CrossRef
    [11]Dean, C. R; Young, A. F; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 2010, 5, 722-26.CrossRef
    [12]Decker, R.; Wang, Y.; Brar, V. W; Regan, W.; Tsai, H. Z; Wu, Q.; Gannett, W.; Zettl, A.; Crommie, M. F Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 2011, 11, 2291-295.CrossRef
    [13]Xue, J. M; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282-85.CrossRef
    [14]Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404-09.CrossRef
    [15]Liu, Z.; Gong, Y. J; Zhou, W.; Ma, L. L; Yu, J. J; Idrobo, J. C; Jung, J.; MacDonald, A. H; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.
    [16]Lee, G. H; Yu, Y. J; Cui, X.; Petrone, N.; Lee, C. H; Choi, M. S; Lee, D. Y; Lee, C.; Yoo, W. J; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931-936.CrossRef
    [17]Song, L.; Ci, L. J; Lu, H.; Sorokin, P. B; Jin, C. H; Ni, J.; Kvashnin, A. G; Kvashnin, D. G; Lou, J.; Yakobson, B. I et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209-215.CrossRef
    [18]Shi, Y.; Hamsen, C.; Jia, X. T; Kim, K. K; Reina, A.; Hofmann, M.; Hsu, A. L; Zhang, K.; Li, H. N; Juang, Z. Y et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134-139.CrossRef
    [19]Zhang, C.; Fu, L.; Zhao, S.; Zhou, Y.; Peng, H.; Liu, Z. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Adv. Mater. 2014, 26, 1776-781.CrossRef
    [20]Gao, Y.; Ren, W. C; Ma, T.; Liu, Z. B; Zhang, Y.; Liu, W. B; Ma, L. P; Ma, X. L; Cheng, H. M Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 2013, 7, 5199-206.CrossRef
    [21]Lu, G. Y; Wu, T. R; Yuan, Q. H; Wang, H.; Wang, H. S; Ding, F.; Xie, X. M; Jiang, M. H Synthesis of large singlecrystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 2015, 6, 6160.CrossRef
    [22
  • 作者单位:Xiuju Song (1)
    Junfeng Gao (3)
    Yufeng Nie (1)
    Teng Gao (1)
    Jingyu Sun (1)
    Donglin Ma (1)
    Qiucheng Li (1)
    Yubin Chen (1)
    Chuanhong Jin (4)
    Alicja Bachmatiuk (5)
    Mark H. Rümmeli (6) (7)
    Feng Ding (3)
    Yanfeng Zhang (1) (2)
    Zhongfan Liu (1)

    1. Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Low Dimensional Carbon Materials, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
    3. Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China
    4. State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
    5. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
    6. Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
    7. IBS Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Daejon, 305-701, Republic of Korea
    2. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Chemical vapor deposition (CVD) synthesis of large-domain hexagonal boron nitride (h-BN) with a uniform thickness is very challenging, mainly due to the extremely high nucleation density of this material. Herein, we report the successful growth of wafer-scale, high-quality h-BN monolayer films that have large single-crystalline domain sizes, up to ~72 μm in edge length, prepared using a folded Cu-foil enclosure. The highly confined growth space and the smooth Cu surface inside the enclosure effectively reduced the precursor feeding rate together and induced a drastic decrease in the nucleation density. The orientation of the as-grown h-BN monolayer was found to be strongly correlated to the crystallographic orientation of the Cu substrate: the Cu (111) face being the best substrate for growing aligned h-BN domains and even single-crystalline monolayers. This is consistent with our density functional theory calculations. The present study offers a practical pathway for growing high-quality h-BN films by deepening our fundamental understanding of the process of their growth by CVD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700