Development and Analysis of Power Saving Models for Energy Conservation in IEEE 802.16m Networks: Towards Green Communication
详细信息    查看全文
  • 作者:A. Rajesh ; R. Nakkeeran
  • 关键词:Medium access control ; Power saving class ; Web browsing ; FTP ; Green communication
  • 刊名:Wireless Personal Communications
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:87
  • 期:2
  • 页码:443-460
  • 全文大小:2,207 KB
  • 参考文献:1.Kim, R. Y., & Mohanty, S. (2010). Advanced power management techniques in next-generation wireless networks. IEEE Communications Magazine, 48(5), 94–102.CrossRef
    2.IEEE Std. for Local and Metropolitan Area Networks. (2010). Part 16: Air interface for fixed and mobile broadband wireless access systems. IEEE P802.16m/D4.
    3.Xiao, Y. (2005). Energy saving mechanism in the IEEE 802.16e wireless MAN. IEEE Communications Letters, 9(7), 595–597.CrossRef
    4.Zhang, Y., Xiao, Y., & Leung, V. C. M. (2009). Energy management analysis and enhancement in IEEE 802.16e WIRELESSMAN. IEEE Transactions on Vehicular Technology, 58(7), 3738–3752.CrossRef
    5.Wang, F., Liu, Z., & Song, X. (2009). Power-saving mechanisms for mobile devices in wireless communications. IET Journal of Communications, 3(2), 257–267.CrossRef MathSciNet
    6.Almhana, J., Liu, Z., & McGorman, R. (2010). Nearly optimal power saving policies for mobile stations in wireless networks. Elsevier Journal of Computer Communications, 33(1), 595–602.CrossRef
    7.Chen, J.-J., Wub, S.-L., Wang, S.-W., & Tseng, Y.-C. (2011). Per-flow sleep scheduling for power management in IEEE 802.16 wireless networks. Elsevier Journal of Computer Networks, 55(1), 3721–3733.CrossRef
    8.Jin, S., Choi, M., & Choi, S. (2010). Performance analysis of IEEE 802.16m sleep mode for heterogeneous traffic. IEEE Communications Letters, 14(5), 405–407.CrossRef
    9.Gomes, J. V. P., & Inacio, P. R. M. (2010). Source traffic analysis. ACM Transactions on Multimedia Computing, Communications, and Applications, 6(3), 1–27.CrossRef
    10.Ghani, S., & Iradat, F. (2011). Loss probability in networks with Pareto distributed traffic. In Proceedings of IEEE 2nd International Conference on Intelligent Systems, Modelling and Simulation (pp. 355–360).
    11.Singhai, R., Joshi, S. D., & Bhatt, R. K. P. (2009). Offered-load model for pareto inter-arrival network traffic. In Proceedings of IEEE 34th Conference on Local Computer Networks (LCN 2009) (pp. 364-367).
    12.Liu, Z., Almhana, J., & McGorman, R. (2008). A traffic modeling based power saving mechanism for mobile devices in wireless systems. In Proceedings of 6th Annual Communication Networks and Services Research Conference (CNSR 2008) (pp. 107–114).
    13.Singhai, R., Joshi, S. D., & Bhatt, R. K. P. (2007). NHPP process associated with heavy tail interarrivals in network traffic. In Proceedings of 15th International Conference on Software, Telecommunications and Computer Networks (pp. 1–5).
    14.Downey, A. B. (2001). Evidence for long-tailed distributions in the internet. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet (pp. 229–241).
    15.Barford, P., & Crovella, M. (1998). Generating representative web workloads for network and server performance evaluation. In Proceedings of ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (pp. 151–160).
    16.Hwang, E., Kim, K. J., Son, J. J., & Choi, B. D. (2010). The power-saving mechanism with periodic traffic indications in the IEEE 802.16e/m. IEEE Transactions on Vehicular Technology, 59(1), 319–334.CrossRef
    17.De Turck, K., De Vuyst, S., Fiems, D., Bruneel, H., & Wittevrongel, S. (2012). Efficient performance analysis of newly proposed sleep-mode mechanisms for IEEE 802.16m in case of correlated downlink traffic. Springer Journal of Wireless Networks, 19(5), 831–842.CrossRef
    18.Kim, M.-G., Choi, J., & Kang, M. (2008). Adaptive power saving mechanism considering the request period of each initiation of awakening in the IEEE 802.16e system. IEEE Communications Letters, 12(2), 106–108.CrossRef
    19.Kim, M.-G., Choi, J., & Kang, M. (2008). Scheduled power-saving mechanism to minimize energy consumption in IEEE 802.16e systems. IEEE Communications Letters, 12(12), 874–876.CrossRef
    20.Kim, M.-G., Choi, J., & Kang, M. (2009). Enhanced power-saving mechanism to maximize operational efficiency in IEEE 802.16e systems. IEEE Transactions on Wireless Communications, 8(9), 4710–4719.CrossRef
    21.Jin, S., Chen, X., Qiao, D., & Choi, S. (2011). Adaptive sleep mode management in IEEE 802.16m wireless metropolitan area networks. Elsevier Journal of Computer Networks, 55, 3774–3783.CrossRef
    22.Lin, Y. W., & Wang, J. S. (2013). An adaptive QoS power saving scheme for mobile WiMAX. Springer Journal of Wireless Personal Communications, 69(4), 1435–1462.CrossRef
    23.Choi, H.-H., Lee, J.-R., & Cho, D.-H. (2007). Hybrid power saving mechanism for VoIP services with silence suppression in IEEE 802.16e systems. IEEE Communications Letters, 11(5), 455–457.CrossRef
    24.Kwon, S.-W., & Cho, D.-H. (2010). Enhanced power saving through increasing unavailability interval in the IEEE 802.16e systems. IEEE Communications Letters, 14(1), 24–26.CrossRef MathSciNet
    25.Tseng, Y.-C., Chen, J.-J., & Yang, Y.-C. (2011). Managing power saving classes in IEEE 802.16 wireless MANs: A fold-and-demultiplex method. IEEE Transactions on Mobile Computing, 10(9), 1237–1247.CrossRef
    26.Wong, D. T. C., Kong, P.-Y., Liang, Y.-C., Chua, K. C., & Mark, J. W. (2009). Wireless broadband networks. Hoboken: Wiley.CrossRef
    27.Anbazhagan, R., & Rangaswamy, N. (2012). Performance analysis of unified power saving mechanism for IEEE 802.16m networks. In IEEE 2nd World Congress on Information and Communication Technologies (WICT 2012) (pp. 56–60).
    28.Chu, K.-C., Huang, T.-C., & Wen, C.-W. (2013). A power saving mechanism for mixed service classes in IEEE 802.16m networks. International Conference on Electronic Engineering and Computer Science. 38–43.
    29.Jin, S., & Qiao, D. (2014). Numerical analysis of the power saving with a bursty traffic model in LTE-advanced networks. Elsevier Journal of Computer Networks, 73(1), 72–83.CrossRef
    30.Lagkas, T. D., Sarigiannidis, P., & Louta, M. (2013). On analyzing the intra-frame power saving potentials of the IEEE 802.16e downlink vertical mapping. Elsevier Journal of Computer Networks, 57(7), 1656–1673.CrossRef
    31.Stea, G., & Virdis, A. (2014). A comprehensive simulation analysis of LTE Discontinuous Reception (DRX). Elsevier Journal of Computer Networks, 73(1), 22–40.CrossRef
    32.Lee, K., Choi, J., & Ma, J. (2015). Performance evaluation for delay time estimation in IEEE 802.16m sleep mode. Springer Journal of Peer-to-Peer Networking and Applications, 8, 886–895.CrossRef
    33.Saidu, I., Subramaniam, S., Jaafar, A., & Zukarnain, Z. A. (2015). An efficient battery lifetime aware power saving (EBLAPS) mechanism in IEEE 802.16e networks. Springer Journal of Wireless Personal Communications, 80, 29–49.CrossRef
    34.Fowler, S., Shahidullah, A. O., Osman, M., Karlsson, J. M., & Yuan, D. (2015). Analytical evaluation of extended DRX with additional active cycles for light traffic. Elsevier Journal of Computer Networks, 77, 90–102.CrossRef
    35.Yang, C.-C., Chen, J.-Y., Mai, Y.-T., & Yu, C.-C. (2014). Load-based power saving in IEEE 802.16j multi-hop relay networks. Springer Journal of Wireless Personal Communications, 77, 1885–1903.CrossRef
    36.Rengarajan, B., Rizzo, G., & Marsan, M. A. (2015). Energy-optimal base station density in cellular access networks with sleep modes. Elsevier Journal of Computer Networks, 78, 152–163.CrossRef
    37.Combes, R., Elayoubi, S. E., Ali, A., Saker, L., & Chahed, T. (2015). Optimal online control for sleep mode in green base stations. Elsevier Journal of Computer Networks, 78, 140–151.CrossRef
    38.Emara, T. Z., Saleh, A. I., & Arafat, H. (2014). Power saving mechanism for VoIP services over WiMAX systems. Springer Journal of Wireless Networks, 20, 975–985.CrossRef
    39.Mushtaq, M. S., Fowler, S., Mellouk, A., & Augustin, B. (2015). QoE/QoS-aware LTE downlink scheduler for VoIP with power saving. Elsevier Journal of Network and Computer Applications, 51, 29–46.CrossRef
    40.Hoquea, M. A., Siekkinen, M., Nurminen, J. K., Aalto, M., & Tarkomac, S. (2015). Mobile multimedia streaming techniques: QoE and energy saving perspective. Elsevier Journal of Pervasive and Mobile Computing, 16, 96–114.CrossRef
    41.Wen, Y.-F., & Hung, K.-Y. (2015). Energy efficiency heterogeneous wireless access selection for multiple types of applications. Elsevier Journal of Systems and Software, 101, 97–109.CrossRef
  • 作者单位:A. Rajesh (1)
    R. Nakkeeran (2)

    1. School of Electronics Engineering, VIT University, Vellore, Tamilnadu, 632014, India
    2. Department of Electronics Engineering, Pondicherry University, Puducherry, Puducherry, 605014, India
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Signal,Image and Speech Processing
    Processor Architectures
  • 出版者:Springer Netherlands
  • ISSN:1572-834X
文摘
Mobile stations (MS) in IEEE 802.16m network undergo frequent battery drain out with mobile Internet services due to inappropriate power saving model (PSM) and power saving class (PSC). Although, PSM models for mobile Internet based services have been available in literature, they do not converge towards the best effort traffic requirements, namely, web browsing and file transfer protocol (FTP). Hence, to conserve energy towards green communication, PSMs are developed by considering the scaling, shaping and location or threshold parameter of the web browsing and FTP traffics. With these proposed PSMs, the MS with conventional PSC suffer from high-energy consumption and response delay as the interarrival time of the traffic increases. Hence, a modified PSC is proposed for the aforementioned traffics. Although the modified PSC performs well with web browsing traffic, it needs improvement under FTP traffic. Therefore, an adaptive PSC is proposed to improve the system performance with FTP traffic. With web browsing traffic, the proposed PSC reduces the response delay and energy consumption by 79.38 and 73.26 %, respectively, than the existing PSC. Also, with FTP traffic, the proposed PSC lessens the response delay and energy consumption by 62.58 and 41.79 %, respectively, than the existing PSC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700