A deep transcriptomic analysis of pod development in the vanilla orchid (Vanilla planifolia)
详细信息    查看全文
  • 作者:Xiaolan Rao (8)
    Nick Krom (9)
    Yuhong Tang (9)
    Thomas Widiez (10) (11)
    Daphna Havkin-Frenkel (11)
    Faith C Belanger (11)
    Richard A Dixon (8)
    Fang Chen (8)

    8. Department of Biological Sciences
    ; University of North Texas ; 1155 Union Circle #305220 ; Denton ; TX ; 76203 ; USA
    9. Samuel Roberts Noble Foundation
    ; 2510 Sam Noble Parkway ; Ardmore ; OK ; 73402 ; USA
    10. Unit茅 Reproduction et D茅veloppement des Plantes
    ; INRA (UMR879)/CNRS (UMR5667)/Universit茅 de Lyon and Ecole Normale Sup茅rieure de Lyon ; 69364 ; Lyon ; France
    11. Department of Plant Biology and Pathology
    ; Rutgers ; The State University of New Jersey ; 59 Dudley Road ; New Brunswick ; NJ ; 08901 ; USA
  • 关键词:Vanilla ; Vanilla planifolia ; Transcriptome ; RNA sequencing ; Lignin ; Vanillin
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:2,574 KB
  • 参考文献:1. Correll, D (1953) Vanilla-its botany, history, cultivation and economic import. Econ Bot 7: pp. 291-358 CrossRef
    2. Ramachandra Rao, S, Ravishankar, GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80: pp. 289-304 CrossRef
    3. Simmonds, NW (1982) Review of J. W. Purseglove, E. G. Brown, C. L. Green, and S. R. J. Robbins 鈥楽pices鈥? Exp Agric 18: pp. 330 CrossRef
    4. Dixon, RA Vanillin Biosynthesis- not as Simple as it Seems?. In: Havkin-Frenkel, D, Belanger, FC eds. (2011) Handbook of Vanilla Science and Technology. Blackwell Publishing Ltd, Chichester, pp. 292-298
    5. Chen, F, Tobimatsu, Y, Havkin-Frenkel, D, Dixon, RA, Ralph, J (2012) A polymer of caffeyl alcohol in plant seeds. Proc Natl Acad Sci U S A 109: pp. 1772-1777 CrossRef
    6. Bory, S, Catrice, O, Brown, S, Leitch, IJ, Gigant, R, Chiroleu, F, Grisoni, M, Duval, MF, Besse, P (2008) Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 51: pp. 816-826 CrossRef
    7. Metzker, ML (2010) Applications of next-generation sequencing technologies - the next generation. Nat Rev Gene 11: pp. 31-46 CrossRef
    8. Wall, PK, Leebens-Mack, J, Chanderbali, AS, Barakat, A, Wolcott, E, Liang, H, Landherr, L, Tomsho, LP, Hu, Y, Carlson, JE, Ma, H, Schuster, SC, Soltis, DE, Soltis, PS, Altman, N, dePamphilis, CW (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10: pp. 347 CrossRef
    9. Su, CL, Chao, YT, Alex Chang, YC, Chen, WC, Chen, CY, Lee, AY, Hwa, KT, Shih, MC (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52: pp. 1501-1514 CrossRef
    10. Liu, L, Li, Y, Li, S, Hu, N, He, Y, Pong, R, Lin, D, Lu, L, Law, M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012: pp. 251364
    11. Garber, M, Grabherr, MG, Guttman, M, Trapnell, C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8: pp. 469-477 CrossRef
    12. Joel, DM, French, JC, Graft, N, Kourteva, G, Dixon, RA, Havkin-Frenkel, D (2003) A hairy tissue produces vanillin. Israel J Plant Sci 51: pp. 157-159 CrossRef
    13. Odoux, E, Brillouet, J-M (2009) Anatomy, histochemistry and biochemistry ofr glucovanillin, oleoresin and mucilage accumualtion sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): a comprehensive and critical reexamination. Fruits 64: pp. 1-21 CrossRef
    14. Zerbino, DR, Birney, E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: pp. 821-829 CrossRef
    15. Schulz, MH, Zerbino, DR, Vingron, M, Birney, E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: pp. 1086-1092 CrossRef
    16. Chevreux, B, Pfisterer, T, Drescher, B, Driesel, AJ, M眉ller, WEG, Wetter, T, Suhai, S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14: pp. 1147-1159 CrossRef
    17. Chevreux, B, Wetter, T, Suhai, S (1999) Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol.: Proc. German Conference on Bioinformatics GCB'99. pp. 45-56
    18. Miller, JR, Koren, S, Sutton, G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95: pp. 315-327 CrossRef
    19. Langmead, B, Trapnell, C, Pop, M, Salzberg, SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: pp. R25 CrossRef
    20. Zhang, JY, Lee, YC, Torres-Jerez, I, Wang, M, Yin, Y, Chou, WC, He, J, Shen, H, Srivastava, AC, Pennacchio, C, Lindquist, E, Grimwood, J, Schmutz, J, Xu, Y, Sharma, M, Sharma, R, Bartley, LE, Ronald, PC, Saha, MC, Dixon, RA, Tang, Y, Udvardi, MK (2013) Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 74: pp. 160-173 CrossRef
    21. Benedito, VA, Torres-Jerez, I, Murray, JD, Andriankaja, A, Allen, S, Kakar, K, Wandrey, M, Verdier, J, Zuber, H, Ott, T, Moreau, S, Niebel, A, Frickey, T, Weiller, G, He, J, Dai, X, Zhao, PX, Tang, Y, Udvardi, MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55: pp. 504-513 CrossRef
    22. Fock-Bastide, I, Palama, TL, Bory, S, Lecolier, A, Noirot, M, Joet, T (2014) Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis. Plant Physiol Biochem 74: pp. 304-314 CrossRef
    23. Ma, C, Wang, X, Ma, MC (2013) rsgcc: Gini Methodology-Based Correlation and Clustering Analysis of Microarray and RNA-Seq Gene Expression Data. R package version 1.0.6 edn.
    24. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: pp. 25-29 CrossRef
    25. Kanehisa, M, Goto, S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: pp. 27-30 CrossRef
    26. Kanehisa, M, Goto, S, Sato, Y, Kawashima, M, Furumichi, M, Tanabe, M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42: pp. D199-D205 CrossRef
    27. Schmid, M, Davison, TS, Henz, SR, Pape, UJ, Demar, M, Vingron, M, Scholkopf, B, Weigel, D, Lohmann, JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37: pp. 501-506 CrossRef
    28. Li, HM, Rotter, D, Hartman, TG, Pak, FE, Havkin-Frenkel, D, Belanger, FC (2006) Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Plant Mol Biol 61: pp. 537-552 CrossRef
    29. Pak, FE, Gropper, S, Dai, WD, Havkin-Frenkel, D, Belanger, FC (2004) Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia. Plant Cell Rep 22: pp. 959-966 CrossRef
    30. Widiez, T, Hartman, TG, Dudai, N, Yan, Q, Lawton, M, Havkin-Frenkel, D, Belanger, FC (2011) Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases. Plant Mol Biol 76: pp. 475-488 CrossRef
    31. Vanholme, R, Cesarino, I, Rataj, K, Xiao, YG, Sundin, L, Goeminne, G, Kim, H, Cross, J, Morreel, K, Araujo, P, Welsh, L, Haustraete, J, McClellan, C, Vanholme, B, Ralph, J, Simpson, GG, Halpin, C, Boerjan, W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341: pp. 1103-1106 CrossRef
    32. Tobimatsu, Y, Chen, F, Nakashima, J, Escamilla-Trevino, LL, Jackson, L, Dixon, RA, Ralph, J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25: pp. 2587-2600 CrossRef
    33. Havkin-Frenkel, D, French, JC, Graft, NM, Pak, F, Frenkel, C, Joel, D (2004) Interrelation of curing and botany in vanilla (Vanilla planifolia) bean. Acta Hort 629: pp. 93-102
    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
    34. Conesa, A, Gotz, S, Garcia-Gomez, JM, Terol, J, Talon, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3676 CrossRef
    35. Czechowski, T, Stitt, M, Altmann, T, Udvardi, MK, Scheible, WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139: pp. 5-17 CrossRef
    36. Ramakers, C, Ruijter, JM, Deprez, RH, Moorman, AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339: pp. 62-66 CrossRef
    37. Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: pp. e45 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Pods of the vanilla orchid (Vanilla planifolia) accumulate large amounts of the flavor compound vanillin (3-methoxy, 4-hydroxy-benzaldehyde) as a glucoside during the later stages of their development. At earlier stages, the developing seeds within the pod synthesize a novel lignin polymer, catechyl (C) lignin, in their coats. Genomic resources for determining the biosynthetic routes to these compounds and other flavor components in V. planifolia are currently limited. Results Using next-generation sequencing technologies, we have generated very large gene sequence datasets from vanilla pods at different times of development, and representing different tissue types, including the seeds, hairs, placental and mesocarp tissues. This developmental series was chosen as being the most informative for interrogation of pathways of vanillin and C-lignin biosynthesis in the pod and seed, respectively. The combined 454/Illumina RNA-seq platforms provide both deep sequence coverage and high quality de novo transcriptome assembly for this non-model crop species. Conclusions The annotated sequence data provide a foundation for understanding multiple aspects of the biochemistry and development of the vanilla bean, as exemplified by the identification of candidate genes involved in lignin biosynthesis. Our transcriptome data indicate that C-lignin formation in the seed coat involves coordinate expression of monolignol biosynthetic genes with the exception of those encoding the caffeoyl coenzyme A 3-O-methyltransferase for conversion of caffeoyl to feruloyl moieties. This database provides a general resource for further studies on this important flavor species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700