Resonance Activation and Collision-Induced-Dissociation of Ions Using Rectangular Wave Dipolar Potentials in a Digital Ion Trap Mass Spectrometer
详细信息    查看全文
  • 作者:Fuxing Xu (1)
    Liang Wang (1)
    Xinhua Dai (2)
    Xiang Fang (2)
    Chuan-Fan Ding (1)
  • 关键词:Ion resonance activation ; Collision ; induced dissociation ; Rectangular wave dipolar potential ; Waveform frequency ; Digital ion trap mass analyzer
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:25
  • 期:4
  • 页码:556-562
  • 全文大小:441 KB
  • 参考文献:1. DeHoffmann, E.: Tandem mass spectrometry: a primer. J Mass Spectrom 31, 129-37 (1996) CrossRef
    2. Wells, J.M., McLuckey, S.A.: Collision-induced dissociation (CID) of peptides and proteins. Biol Mass Spectrom 402, 148-85 (2005)
    3. Sleno, L., Volmer, D.A.: Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39, 1091-112 (2004) CrossRef
    4. McLuckey, S.A.: Principles of collisional activation in analytical mass-spectrometry. J Am Soc Mass Spectrom 3, 599-14 (1992) CrossRef
    5. Wang, J.: Analysis of macrolide antibiotics using liquid chromatography-mass spectrometry, in food, biological, and environmental matrices. Mass Spectrom Rev 28, 50-2 (2009) CrossRef
    6. Shukla, A.K., Futrell, J.H.: Tandem mass spectrometry: dissociation of ions by collisional activation. J Mass Spectrom 35, 1069-090 (2000) CrossRef
    7. Mayer, P.M., Poon, C.: The mechanisms of collisional activation of ions in mass spectrometry. Mass Spectrom Rev 28, 608-39 (2009) CrossRef
    8. Deng, L., Kitova, E.N., Klassen, J.S.: Mapping protein–ligand interactions in the gas phase using a functional group replacement strategy Comparison of CID and BIRD activation methods. J Am Soc Mass Spectrom 24, 988-96 (2013) CrossRef
    9. Tolmachev, A.V., Vilkov, A.N., Bogdanov, B., Pasa-Tolic, L., Masselon, C.D., Smith, R.D.: Collisional activation of ions in rf ion traps and ion guides: the effective ion temperature treatment. J Am Soc Mass Spectrom 15, 1616-628 (2004) CrossRef
    10. Murrell, J., Despeyroux, D., Lammert, S.A., Stephenson, J.L., Goeringer, D.E.: Fast excitation. CID in a quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 14, 785-89 (2003) CrossRef
    11. Laskay, U.A., Jackson, G.P.: Resonance excitation and dynamic collision-induced dissociation in quadrupole ion traps using higher-order excitation frequencies. Rapid Commun Mass Spectrom 22, 2342-348 (2008) CrossRef
    12. Splendore, M., Lausevic, M., Lausevic, Z., March, R.E.: Resonant excitation and/or ejection of ions subjected to DC and rf fields in a commercial quadrupole ion trap. Rapid Commun Mass Spectrom 11, 228-33 (1997) CrossRef
    13. Prentice, B.M., McLuckey, S.A.: Dipolar DC collisional activation in a "stretched" 3-D ion trap: the effect of higher order fields on rf-heating. J Am Soc Mass Spectrom 23, 736-44 (2012) CrossRef
    14. Prentice, B.M., Xu, W., Ouyang, Z., McLuckey, S.A.: DC potentials applied to an end-cap electrode of a 3D ion trap for enhanced MSn functionality. Int J Mass Spectrom 306, 114-22 (2011) CrossRef
    15. Prentice, B.M., Santini, R.E., McLuckey, S.A.: Adaptation of a 3-D quadrupole ion trap for dipolar DC collisional activation. J Am Soc Mass Spectrom 22, 1486-492 (2011) CrossRef
    16. Ding, L., Brancia, F.L.: Electron capture dissociation in a digital ion trap mass spectrometer. Anal Chem 78, 1995-000 (2006) CrossRef
    17. Brancia, F.L., McCullough, B., Entwistle, A., Grossmann, J.G., Ding, L.: Digital asymmetric waveform isolation (DAWI) in a digital linear ion trap. J Am Soc Mass Spectrom 21, 1530-533 (2010) CrossRef
    18. Ding, L., Sudakov, M., Brancia, F.L., Giles, R., Kumashiro, S.: A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J Mass Spectrom 39, 471-84 (2004) CrossRef
    19. Ding, L., Sudakov, M., Kumashiro, S.: A simulation study of the digital ion trap mass spectrometer. Int J Mass Spectrom 221, 117-38 (2002) CrossRef
    20. McCullough, B.J., Entwistle, A., Konishi, I., Buffey, S., Hasnain, S.S., Brancia, F.L., Grossmann, J.G., Gaskell, S.J.: Digital ion trap mass spectrometer for probing the structure of biological macromolecules by gas phase X-ray scattering. Anal Chem 81, 3392-397 (2009) CrossRef
    21. Wang, S.Y., Johnston, M.V.: Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer. Int J Mass Spectrom 258, 50-7 (2006) CrossRef
    22. Ding, L., Kumashiro, S.: Ion motion in the rectangular wave quadrupole field and digital operation mode of a quadrupole ion trap mass spectrometer. Chinese J Vacuum Sci Technol 21, 176-81 (2001)
    23. Berton, A., Traldi, P., Ding, L., Brancia, F.L.: Mapping the stability diagram of a digital ion trap (DIT) mass spectrometer varying the duty cycle of the trapping rectangular waveform. J Am Soc Mass Spectrom 19, 620-25 (2008) CrossRef
    24. Wang, L., Xu, F.X., Ding, C.F.: Dipolar direct current driven collision-induced dissociation in a digital ceramic-based rectilinear ion trap mass spectrometer. Anal Chem 85, 1271-275 (2013) CrossRef
    25. Wang, L., Xu, F.X., Ding, C.F.: Performance and geometry optimization of the ceramic-based rectilinear ion traps. Rapid Commun Mass Spectrom 26, 2068-074 (2012) CrossRef
  • 作者单位:Fuxing Xu (1)
    Liang Wang (1)
    Xinhua Dai (2)
    Xiang Fang (2)
    Chuan-Fan Ding (1)

    1. Department of Chemistry and Laser Chemistry Institute, Fudan University, Shanghai, China
    2. National Institute of Metrology, Beijing, China
  • ISSN:1879-1123
文摘
Collision-induced dissociation (CID) of ions by resonance activation in a quadrupole ion trap is usually accomplished by resonance exciting the ions to higher kinetic energy, whereby the high kinetic energy ions collide with a bath gas, such as helium or argon, inside the trap and dissociate to fragments. A new ion activation method using a well-defined rectangular wave dipolar potential formed by dividing down the trapping rectangular waveform is developed and examined herein. The mass-selected parent ions are resonance excited to high kinetic energies by simply changing the frequency of the rectangular wave dipolar potential and dissociation proceeds. A relationship between the ion mass and the activation waveform frequency is also identified and described. This highly efficient (CID) procedure can be realized by simply changing the waveform frequency of the dipolar potential, which could certainly simplify tandem mass spectrometry analysis methods. Figure ?/div>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700