Assessment of bed sediment metal contamination in the Shadegan and Hawr Al Azim wetlands, Iran
详细信息    查看全文
  • 作者:Hassan Nasirian ; K. N. Irvine
  • 关键词:Assessment ; Contamination ; Metal ; Bed sediment ; Wetland ; Shadegan ; Hawr Al Azim
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:188
  • 期:2
  • 全文大小:6,528 KB
  • 参考文献:Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.CrossRef
    Adamo, P., Arienzo, M., Imperato, M., Naimo, D., Nardi, G., & Stanzione, D. (2005). Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 61, 800–809.CrossRef
    Ahmad, M., Moon, D. H., Lim, K. J., Shope, C. L., Lee, S. S., Usman, A. R. A., Kim, K.-R., Park, J.-H., Hur, S.-O., Yan, J. E., & Ok, Y. S. (2012). An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Science. doi:10.​1007/​s12665-012-1550-1 .
    Barbier, E. B. (1994). Valuing environmental functions: tropical wetlands. Land Economics, 79(2), 155–173.CrossRef
    Bergstrom, J. C., Stoll, J. R., Titre, J. P., & Wright, V. L. (1990). Economic value of wetlands-based recreaction. Ecological Economics, 2, 129–147.CrossRef
    Bigdeli, M., & Seilsepour, M. (2008). Investigation of metals accumulation in some vegetables irrigated with waste water in Shahre Rey-Iran and toxicological implications. American-Eurasian Journal of Agriculture and Environmental Science, 4(1), 86–92.
    Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & R. A. Furness (Eds.), Coastal GIS 2003. Australia: Wollongong University Papers in Center for Maritime Policy, 14.
    Boone, M. D., Semlitsch, R. D., Little, E. E., & Doyle, M. C. (2007). Multiple stressors in amphibian communities: effects of chemical contamination, bullfrogs, and fish. Ecological Applications, 17(1), 291–301.CrossRef
    Booth, D. B., & Reinelt, L. E. (1993). Consequences of urbanization on aquatic systems – measured effects, degradation thresholds, and corrective strategies. In Watershed 93 Conference Proceedings, March 21–24. Alexandria, VA: Tetra Tech.
    Boyd, J., & Wainger, L. (2002). Landscape indicators of ecosystem service benefits. American Journal of Agricultural Economics, 5, 1371–1378.CrossRef
    Brauman, K. A., Daily, G. C., Duarte, T. K., & Mooney, H. A. (2007). The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environmental Resources, 32, 67–98.CrossRef
    Breault, R. F., Smith, K. P., & Sorenson, J. R. (2005). Residential Street-dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-type Sweepers. New Bedford, Massachusetts, 2003–04, USGS Scientific Investigations Report 2005–5184.
    Brinson, M. M., & Malvarez, A. I. (2002). Temperate freshwater wetlands: types, status, and threats. Environmental Conservation, 29(2), 115–133.CrossRef
    Camponelli, K. M., Lev, S. M., Snodgrass, J. W., Landa, E. R., & Casey, R. E. (2010). Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments. Environmental Pollution, 158, 2143–2149.CrossRef
    Cevik, F., Goksu, M. Z. L., Derici, O. B., & Findik, O. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152, 309–317.CrossRef
    Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66, 1431–1440.CrossRef
    Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water, Air and Soil Pollution, 90(3), 543–556.CrossRef
    Costanza, R. R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O”Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van der Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRef
    Creed, J. T., Brockhoff, C. A., & Martin, T. D. (1994). Method 200.8: determination of trace elements in waters and wastes by inductively coupled plasma–mass spectrometry. Revision 5.4, EMMC Version. Cincinnati, OH: U.S. Environmental Protection Agency.
    Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine & Freshwater Research, 65(10), 934–941.CrossRef
    Devesa-Rey, R., Diaz-Fierros, F., & Barral, M. T. (2011). Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediment (Anllons River, NW Spain). Environmental Monitoring and Assessment, 179, 371–388.CrossRef
    Diagomanolin, V., Farhang, M., Ghazi-Khansari, M., & Jafarzadeh, N. (2004). Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicology Letters, 151(1), 63–67.CrossRef
    Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407, 3972–3985.CrossRef
    Esfandbod, M., Forghani, A., Adhami, E., Rezaei, & Rashti, M. (2011). The role of CEC and pH in Cd retention from soils of North of Iran. Soil and Sediment Contamination: An International Journal, 20(8), 908–920.CrossRef
    Farrokhian, F., Savari, A., Imandel, K., Abbaspoor, M., & Riazi, B. (1997). Chemical quality of Shadegan wetland. Journal of Environmental Studies, 19, 13–24.
    Faulkner, S. (2004). Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems, 7, 89–106.CrossRef
    Fishbein, L. (1981). Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel. Environmental Health Perspectives, 40, 43–64.CrossRef
    Ghosh, D. (1999). Water Utilization in East Calcutta Wetlands. Netherlands: Urban Waste Expertise Program, Occasional Paper, Netherlands Development Assistance Program.
    Ghosh, D. (2014). Ecosystem Management Towards Merging Theory and Practice. New Delhi: NIMBY Books.
    Ghrefat, H., & Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65, 2114–2121.CrossRef
    Harrison, R. M. (1979). Toxic metals in street and household dusts. Science of the Total Environment, 11, 89–97.CrossRef
    Hartig, J. H. (2010). Burning Rivers, Revival of Four Urban-Industrial Rivers that Caught Fire (p. 181). Burlington, Canada: Ecovision World Monograph Series, Aquatic Ecosystem Health & Management Society.
    Herngren, L., Goonetilleke, A., & Ayoko, G. A. (2006). Analysis of heavy metals in road-deposited sediments. Analytica Chimica Acta, 571, 270–278.CrossRef
    Hessari, B., Bruggeman, A., Akhoond-Ali, A., Oweis, T., & Abbasi, F. (2012). Supplemental irrigation potential and impact on downstream flow of Karkheh River Basin of Iran. Hydrology and Earth System Sciences Discussions, 9, 13519–13536.CrossRef
    Ho, Y. B., & Tai, K. M. (1988). Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environmental Pollution, 49, 37–51.CrossRef
    Hosseini Alhashemi, A., Karbassi, A., Kiabi, B. H., Monavari, S. M., & Sekhavatjou, M. S. (2012). Bioaccumulation of trace elements in different tissues of three commonly available fish species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem. Environmental Monitoring and Assessment, 184, 1865–1878.CrossRef
    Hudson-Edwards, K. A., Macklin, M. G., Miller, J. R., & Lechler, P. J. (2001). Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72, 229–250.CrossRef
    Irvine, K. N., Murray, S. D., Drake, J. J., & Vermette, S. J. (1989). Spatial and temporal variability of dry dustfall and associated trace elements: Hamilton, Canada. Environmental Technology Letters, 10, 527–540.CrossRef
    Irvine, K. N., Frothingham, K. M., Rossi, M. C., Pickard, S., Atkinson, J., & Bajak, T. (2003). Contaminated sediment in the Buffalo River Area of Concern – Historical trends and current conditions. In. Sediment Quality Assessment and Management: Insight and Progress, M. Munawar, ed., Ecovision World Monograph Series, Aquatic Ecosystem Health and Management Society, pp. 81–112.
    Irvine, K., Sampson, M., Visoth, T., Yim, M., Veasna, K., Koottatep, T., & Rupp, J. (2008). Spatial patterns of E. coli and detergents in the Boeng Cheung Ek treatment wetland, Phnom Penh, Cambodia (The 6th International Symposium on Southeast Asian Water Environment, pp. 78–81). Bandung: SEAWE.
    Irvine, K. N., Perrelli, M. F., Ngoen-klan, R., & Droppo, I. G. (2009). Metal levels in street sediment from an industrial city: spatial trends, chemical fractionation, and management implications. Journal of Soils and Sediments, 9, 328–341.CrossRef
    Jacob, D. L., & Otte, M. L. (2003). Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? Water, Air and Soil Pollution, 3, 91–104.CrossRef
    Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment, 141, 35–47.CrossRef
    Jalali, M., & Khanlari, Z. V. (2008). Environmental contamination of Zn, Cd, Ni, Cu, and Pb from industrial areas in Hamadan Province, western Iran. Environmental Geology, 55(7), 1537–1543.CrossRef
    Kaffashi, S., Shamsudin, M. N., Radam, A., Rahim, K. A., Yacob, M. R., Muda, A., & Yazid, M. (2011). Economic valuation of Shadegan International Wetland, Iran: notes for conservation. Regional Environmental Change, 11(4), 925–934.CrossRef
    Karageorgis, A. P., Katsanevakis, S., & Kaberi, H. (2009). Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water, Air and Soil Pollution, 204, 43–258.CrossRef
    Karimi, F., Moattar, F., Farshchi, P., Savari, A., & Parham, H. (2012). Ecological risk assessment of agricultural pesticides throughout the Shadegan Wetland, Iran. Journal of Agricultural Science, 4(5), 109–116.CrossRef
    La Peyre, M. K., Reams, M. A., & Mendelssohn, I. A. (2001). Linking actions to outcomes in wetland management: an overview of U.S. state wetland management. Wetlands, 21(1), 66–74.CrossRef
    Lee, S. Y., Dunn, R. J. K., Young, R. M., Connolly, R. M., Dale, P. E. R., Dehayr, R., Lemckert, C. J., McKinnon, S., Powell, B., Teasdale, P. R., & Welsh, D. T. (2006). Impact of urbanization on coastal wetland structure and function. Australian Ecology, 31, 149–163.CrossRef
    Lim, S. (2013). X-Ray Fluorescence (XRF) Analyzer - Theory, Utility, and QA/QC for Environmental and Commercial Product Samples in Cambodia. Unpubl. M.S. Thesis. Buffalo State: State University of New York.
    Lim, S., Irvine, K. N., Murphy, T. P., & Wilson, K. (2015). Sediment-associated metals levels along the sewer-natural treatment wetland continuum, Phnom Penh, Cambodia. Urban Water Journal, http://​dx.​doi.​org/​10.​1080/​1573062X.​2015.​1036088 .
    Liu, H., Li, L., Yin, C., & Shan, B. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences, 20, 390–397.CrossRef
    Lopez-Flores, R., Quintana, X. D., Salvado, V., Hidalgo, M., Sala, L., & Moreno-Amich, R. (2003). Comparison of nutrient and contaminant fluxes in two areas with different hydrological regimes (Emporda Wetlands, NE Spain). Water Research, 37, 3034–3046.CrossRef
    MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRef
    Machlis, G. E., & Hanson, T. (2008). Warfare ecology. Bioscience, 58(8), 729–736.CrossRef
    Marsalek, J., & Viklander, M. (2010). Controlling contaminants in urban stormwater: linking environmental science and policy. In J. Lundqvist (Ed.), On the Water Front: Selections from the 2010 World Water Week in Stockholm (pp. 101–108). Stockholm: Stockholm International Water Institute.
    Meijerink, A. M. J., Gieske, A. S. M., & Vekerdy, Z. (2005). Surface energy balance using satellite data for the water balance of a traditional irrigation-wetland system in SW Iran. Irrigation and Drainage Systems, 19, 89–105.CrossRef
    Mendenhall, W. (1979). Introduction to Probability and Statistics (5th ed.). North Scituate, MA: Duxbury Press.
    Ministry of Environment and Energy (MOEE). (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Toronto: Queen’s Printer for Ontario. ISBN 0-7729-9248-7.
    Mirzaei, R., Conroy, J., & Yoxon, P. (2010). Otters in the Hawr Al Azim Wetland, Iran. Hystrix It. J. Mamm., 21(1), 83–88.
    Mitsch, W. J., & Gosselink, J. G. (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35, 25–33.CrossRef
    Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.CrossRef
    Muller, G. (1979). Schwermetalle in den sediments des Rheins-Veranderngen seitt 1971. Umschan, 79, 778–783.
    N’Guessan, Y. M., Probst, J. L., Bur, T., & Probst, A. (2009). Trace elements in stream bed sediment from agricultural catchments (Gascogne region, S-W France): where do they come from? Science of the Total Environment, 407(8), 2939–2952.CrossRef
    Nabulo, G., Origa, H. O., Nasinyama, G. W., & Cole, D. (2008). Assessment of Zn, Cu, Pb and Ni contamination in wetland soils and plants in the Lake Victoria basin. International Journal of Environmental Science Technology, 5(1), 65–74.CrossRef
    Nasirian, H. (2013). Using insects for heavy metal contamination survey in Shadegan wetland. Thesis for fulfillment of the PhD Degree in Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences.
    Nasirian, H. (2014). Evaluation of water quality and organic pollution of Shadegan and Hawr Al Azim wetlands by biological indices using insects. Journal of entomology and zoology studies, 2(5), 193–200.
    Nasirian, H., Nasirian, Z., & Sadeghi, S. M. T. (2014). Use of inductively coupled plasma-mass spectrometry, ICP-MS, in entomology. International Journal of Entomological Research, 2(2), 47–57.
    O’Day, P. A., Carroll, S. A., Randall, S., Martinelli, R. E., Anderson, S. L., Jelinski, J., & Knezovich, J. P. (2000). Metal speciation and bioavailability in contaminated estuary sediments, Alameda Naval Air Station, California. Environmental Science and Technology, 34, 3665–3673.CrossRef
    Odabasi, M., Bayram, A., Elbir, T., Seyfioglu, R., Dumanoglu, Y., & Ornektekin, S. (2010). Investigation of soil concentrations of persistent organic pollutants, trace elements, and anions due to iron-steel plant emissions in an industrial region in Turkey. Water, Air and Soil Pollution, 213, 375–388.CrossRef
    Olivie-Lauquet, G., Gruau, G., Dia, A., Riou, C., Jaffrezic, A., & Henin, O. (2001). Release of trace metals in wetlands: role of seasonal variability. Water Research, 35(4), 943–952.CrossRef
    Partow, H. (2001). The Mesopotamian Marshlands: Demise of an Ecosystem. Nairobi, Kenya: UNEP Report.
    Perkins, D. B., Haws, N. W., Jawitz, J. W., Das, B. S., & Rao, P. S. C. (2007). Soil hydraulic properties as ecological indicators in forested watersheds impacted by mechanized military training. Ecological Indicators, 7(3), 589–597.CrossRef
    Praveena, S. M., Ahmed, A., Radojevic, J., Abdullah, M. H., & Aris, A. Z. (2008). Heavy metals in mangrove surface sediment of Mengkabong Lagoon, Sabah: multivariate and geo-accumulation index approaches. International Journal of Environmental Research, 2(2), 139–148.
    Richardson, C. J. (2010). The status of Mesopotamian Marsh restoration in Iraq: a case study of transboundary water issues and internal water allocation problems. In K. Korhonen-Kurki & M. Fox (Eds.), Towards New Solutions in Managing Environmental Crisis (pp. 59–72). Helsinki, Finland: Helsinki University Printing House.
    Ross, P. E., Burton, G. A., Crecelius, E. A., Filkins, J. C., Giesy, J. P., Ingersoll, C. G., Landrum, P. F., Mac, M. J., Murphy, T. J., Rathbun, J. E., Smith, V. E., Tatem, H. E., & Taylor, R. W. (1992). Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy. Journal of Aquatic Ecosystem Health, 1, 193–200.CrossRef
    Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (SW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980.CrossRef
    Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.CrossRef
    Saeedi, M., Hosseinzadeh, M., Jamshidi, A., & Pajooheshfar, S. P. (2009). Assessment of heavy metals contamination and leaching characteristics in highway side soils, Iran. Environmental Monitoring and Assessment, 151(1–4), 231–241.CrossRef
    Sager, M. (1997). Possible trace metal load from fertilizers. Die Bodenkultur, 48(4), 217–223.
    Sekabira, K., Oryem Origa, H., Basamba, T. A., Mutumba, G., & Kakudidi, E. (2010). Assessment of heavy metal pollution in the urban stream sediments and its tributaries. International Journal of Environmental Science and Technology, 7(3), 435–446.CrossRef
    Selvaraj, K., Ram Mohan, V., & Szefer, P. (2004). Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Marine Pollution Bulletin, 49, 174–185.CrossRef
    Silveira, M. L., Comerford, N. B., Reddy, K. R., Prenger, J., & DeBusk, W. F. (2010). Influence of military land uses on soil carbon dynamics in forest ecosystems of Georgia, USA. Ecological Indicators, 10(4), 905–909.CrossRef
    Solomons, W., & Forstner, U. (1984). Metals in the Hydrocycle. Berlin: Springer.CrossRef
    Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.
    Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.CrossRef
    Tiner, R. W. (1984). Wetlands of the United States: Current Status and Recent Trends. Washington, D.C: U.S. Department of the Interior, Fish and Wildlife Service Report.
    Turner, K. R., Georgio, S., & Fisher, B. (2011). Valuing Ecosystem Services, The Case of Multi-functional Wetlands. Washington, D.C.: Earthscan.
    Uduma, A. U., & Jimoh, W. L. O. (2014). Aluminum as a reference element for the elucidation of Pb enrichment/depletion in selected arable soils of Nigeria. IOSR Journal of Engineering, 4(3), 15–22.
    Vald’es, J., Vargas, G., Sifeddine, A., Ortlieb, L., & Guinez, M. (2005). Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23 °S), Northern Chile: geochemical and statistical approach. Marine Pollution Bulletin, 50, 1558–1568.CrossRef
    Vermette, S. J., Irvine, K. N., & Drake, J. J. (1987). Elemental and size distribution characteristics of urban sediments: Hamilton, Canada. Environmental Technology Letters, 8, 619–634.CrossRef
    Visoth, T., Yim, M., Vathna, S., Irvine, K., & Koottatep, T. (2010). Efficiency of Phnom Penh’s natural wetlands in treating wastewater discharges. Asian Journal of Water, Environment and Pollution, 7(3), 39–48.
    Yuan, G.-L., Su, T.-H., Han, P., & Li, J. (2013). Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. Journal of Geochemical Exploration, 130, 15–21.CrossRef
    Zedler, J. B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environmental Resources, 30, 39–74.CrossRef
    Zhang, L., Ye, X., Feng, H., Jing, Y., Ouyang, T., Yu, X., Liang, R., Gao, C., & Chen, W. (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54, 974–982.CrossRef
  • 作者单位:Hassan Nasirian (1)
    K. N. Irvine (2)
    Sayyed Mohammad Taghi Sadeghi (1)
    Amir Hossein Mahvi (3) (4)
    Shahrokh Nazmara (3)

    1. Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
    2. National Institute of Education, Nanyang Technological University, Singapore, Singapore
    3. Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
    4. Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
The Shadegan and Hawr Al Azim wetlands are important natural resources in southwestern Iran, yet relatively little work has been done to assess ecosystem health of the wetlands. Bed sediment from both wetlands was sampled in individual months between October, 2011 and December, 2012 and analyzed for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, and Zn using inductively coupled plasma optical emission spectrometry (ICP-OES). The metals data were evaluated using a combination of sediment quality guidelines from the Ontario Ministry of Energy and Environment (MOEE, Canada), enrichment factors (EFs), and a geo-accumulation index (Igeo) approach. The sediments exceeded MOEE Lowest Effect Levels (LELs) consistently for Cr and Cu and a small proportion of samples (5 %) for Hg. Levels of As, Cd, Fe, Pb, and Zn did not exceed LELs and none of the samples exceeded the Severe Effect Levels (SELs). In addition to the sediment guidelines, both the EF and Igeo calculations suggested levels of Mn and Fe were severely enriched, while the EF indicated Cd was slightly enriched. Metal levels in the Shadegan wetland exhibited both spatial and seasonal trends. Metal levels were greater near input areas from agricultural, urban, and industrial discharges and runoff as compared to the more remote and quiescent central part of the wetland. Except for Fe, the metal levels were greater in the wet season as compared to the dry season, perhaps due to greater stormwater runoff and sediment loads. This study provides baseline data which can be used to support development of appropriate contaminant source management strategies to help ensure conservation of these valuable wetland resources.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700