Metamorphic degassing of carbonates in the contact aureole of the Aguablanca Cu–Ni–
详细信息    查看全文
  • 作者:Clément Ganino (1)
    Nicholas T. Arndt (2)
    Catherine Chauvel (2)
    Fernando Tornos (3)
  • 关键词:Contact aureole ; Thermal metamorphism ; Carbonates ; Limestones ; Carbon dioxide emission
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:168
  • 期:3
  • 全文大小:3,603 KB
  • 参考文献:1. Aarnes I, Svensen H, Connolly JAD, Podladchikov YY (2010) How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim Cosmochim Acta 74:7179-195. doi:10.1016/j.gca.2010.09.011 CrossRef
    2. Aarnes I, Svensen H, Polteau S, Planke S (2011) Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chem Geol 281:181-94. doi:10.1016/j.chemgeo.2010.12.007 CrossRef
    3. Bachiller N, Galindo C, Darbyshire DPF, Casquet C (1997) Geocronología Rb-Sr de los leucogranitos del complejo plutónico de Burguillos del Cerro (Badajoz). Geogaceta 21:29-0. ISSN 0213-683X
    4. Berman RG (2007) winTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geol Surv Can Open File 5462 (ed. 2.32): 41
    5. Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: Equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 47:1247-275. doi:10.1016/0016-7037(83)90066-2 CrossRef
    6. Bowman JR, Essene E (1982) P-T-X(CO2) conditions of contact metamorphism in the Black Butte aureole, Elkhorn, Montana. Am J Sci 282:311-40. doi:10.2475/ajs.282.3.311 CrossRef
    7. Buchanan DL, Nolan J (1979) Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-Complex rocks. Can Miner 17:483 CrossRef
    8. Carpentier M, Chauvel C, Maury RC, Mattielli N (2009) The “zircon effect-as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments. Earth Planet Sci Lett 287(1-):86-9. doi:10.1016/S0012-821X(99)00014-X CrossRef
    9. Carriedo J, Tornos F (2010) In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol. 3. PGC Publishing, pp 441-60. ISBN: 0958057419, 9780958057417
    10. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford, Clarendon Press
    11. Casquet C (1980) Fenomenos de endomorfismo, metamorfismo y metasomatismo de contacto en los mármoles de Rivera de Cala. Sierra Morena, Unpublished M. Sc thesis, Madrid, Spain, University Complutense
    12. Casquet C (1982) Metamorfismo de contacto en el borde N del plutón de Santa Olalla de Cala con especial enfasis en las rocas carbonatadas. R R Acad Cienc Exactas Fis Nat Madr 76:334-63
    13. Casquet C, Velasco F (1978) Contribución a la geología de los skarns cálcicos en torno a Santa Olalla de Cala (Huelva-Badajoz). Estudios Geológicos 34:399-05
    14. Casquet C, Galindo C, Darbyshire DPF, Noble SR, Tornos F (1998) Fe-U-REE mineralization at Mina Monchi, Burguillos del Cerro, Spain: age and isotope (U–Pb, Rb–Sr and Sm–Nd) constraints on the evolution of the ores. In: Proceedings GAC-MAC-APGGQ Quebec 98
    15. Casquet C, Galindo C, Tornos F, Velasco F (1999) Evidence of crustal contamination in magmas and Ni–Cu ores in the Santa Olalla de Cala Plutonic Complex (Badajos, Spain). Boletín de la Sociedad Espa?ola de Mineralogía 22:29-0
    16. Casquet C, Galindo C, Tornos F, Velasco F, Canales A (2001) The Aguablanca Cu-Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd) and ore (S). Ore Geol Rev 18:237-50. doi:10.1016/S0169-1368(01)00033-6 CrossRef
    17. Chauvel C, Bureau S, Poggi C (2011) Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostand Geoanal Res 35(1):125-43. doi:10.1111/j.1751-908X.2010.00086.x CrossRef
    18. Dallmeyer RD, Casquero JLG, Quesada C (1995) 40Ar/39Ar Mineral age constraints on the emplacement of the Burguillos del Cerro Ingeous complex (Ossa-Morena zone, SW Iberia). Boletín Geológico y Minero 106:203-14
    19. Deer WA, Howie RA, Zussman J (1970) An introduction to the rock-forming minerals, Longman Scientific and Technical. ISBN-13: 978-0582300941
    20. Eguíluz L (1988) Petrogenesis de Rocas Igneas y Metamorficas cas en Elantiforme Burguillos-Monnesterio, Maazo Iberico Meridional University of Pais Vasco, Bilbao
    21. Eguíluz L, Carracedo M, Apalategui O (1989) Stock de Santa Olalla de Cala (Zona de Ossa Morena, Espa?a). Stud Geol Salmant 4:145-57
    22. Eguíluz L, Ibarguchi JIG, Abalos B, Apraiz A (2000) Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. Bull Geol Soc Am 112:1398-413. doi:10.1130/0016-7606(2000)112<1398:SHACOC>2.0.CO;2
    23. Expósito I, Simancas JF, González Lodeiro F, Bea F, Montero P, Salman K (2003) Metamorphic and deformational imprint of Cambrian-Lower Ordovician rifting in the Ossa-Morena Zone (Iberian Massif, Spain). J Struct Geol 25:2077-087. doi:10.1016/S0191-8141(03)00075-0 CrossRef
    24. Ferry JM (1994) Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones. Am Miner 79:719-36
    25. Ferry JM, Mutti LJ, Zuccala GJ (1987) Contact metamorphism/hydrothermal alteration of Tertiary basalts from the Isle of Skye, northwest Scotland. Contrib Mineral Petrol 95:166-81. doi:10.1007/BF00381266
    26. Ferry JM, Wing BW, Penniston-Dorland SC, Rumble D (2002) The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review. Contrib Mineral Petrol 142:679-99. doi:10.1007/s00410-001-0316-7 CrossRef
    27. Galindo C, Casquet C (2004) El magmatismo prevarisco en la zona de Ossa–Morena. Geologiá de Espana. Sociedad Geológica de Espana (SGE) and Instituto Geológico y Minero (IGME), Madrid, pp 190-94
    28. Galindo C, Portugal Ferreira M, Casquet C, Priem HNA (1990) Dataciones Rb/Sr en el complejo plutónico Táliga-Barcarrota (CPTB) (Badajóz). Geogaceta 8:7-0
    29. Ganino C, Arndt NT (2009) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces Geology, vol 37. pp 323-26. doi:10.1130/G25325A.1
    30. Ganino C, Arndt NT, Zhou M-F, Chauvel C (2008) Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineralium deposita. doi:10.1007/s00126-008-0191-5
    31. Ganino C, Arndt NT, Chauvel C, Jean A, Athurion C (2013) Melting of carbonate wall rocks and formation of the heterogeneous aureole of the Panzhihua intrusion, China. Geosci Front 4:535-46. doi:10.1016/j.gsf.2013.01.012 CrossRef
    32. Govindaraju K, Mevelle G (1987) Fully automated dissolution and separation methods for inductively coupled plasma atomic emission spectrometry rock analysis. Application to the determination of rare earth elements. Plenary lecture. J Anal At Spectrom 2:615-21. doi:10.1039/JA9870200615 CrossRef
    33. Gromet LP, Haskin LA, Korotev RL, Dymek RF (1984) The “North American shale composite- its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469-482. doi:10.1016/0016-7037(84)90298-9 CrossRef
    34. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297-14. doi:10.1016/0012-821X(88)90132-X CrossRef
    35. Iacono Marziano G, Marecal V, Pirre M, Gaillard F, Arteta J, Scaillet B, Arndt NT (2012) Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet Sci Lett 357-58:308-18. doi:10.1016/j.epsl.2012.09.051 CrossRef
    36. Jamtveit B, Hervig RL (1994) Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 263:505-08. doi:10.1126/science.263.5146.505 CrossRef
    37. Jugo P (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415-18. doi:10.1130/G25527A.1 CrossRef
    38. Kerrick DM, Caldeira K (1993) Paleoatmospheric consequences of CO2 released during early Cenozoic regional metamorphism in the Tethyan Orogen. Chem Geol 108:201-30. doi:10.1016/0009-2541(93)90325-D CrossRef
    39. Kerrick DM, Caldeira K (1998) Metamorphic CO2 degassing from orogenic belts. Chem Geol 145:213-32. doi:10.1016/S0009-2541(97)00144-7 CrossRef
    40. Lehmann J, Arndt NT, Windley B, Zhou MF, Wang CY, Harris C (2007) Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni–Cu–PGE sulfide deposit, Gansu, China. Econ Geol 102:75-4. doi:10.2113/gsecongeo.102.1.75 CrossRef
    41. Linán E, Quesada C (1990) Ossa-Morena zone: rift phase (Cambrian). Pre-Mesozoic Geology of Iberia. Springer, Berlin, pp 259-66
    42. McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015-050. doi:10.1016/0016-7037(90)90269-Q CrossRef
    43. Montero P, Salman K, Bea F, Azor A, Expósito I, Lodeiro F, Martínez Poyatos D, Simancas F (2000) New data on the geochronology of the Ossa-Morena Zone, Iberian Massif. Basement Tecton 15:36-38
    44. N?gler TF, Schafer HJ, Gebauer D (1995) Evolution of the Western European continental crust: implications from Nd and Pb isotopes in Iberian sediments. Chem Geol 121:345-57. doi:10.1016/0009-2541(94)00129-V CrossRef
    45. Ochsner A (1993) U–Pb geochronology of the upper proterozoic-lower paleozoic geodynamic evolution in the Ossa-Morena Zone (SW Iberia) constraints on the timing of the cadomian orogeny. ETH Zurich, Zurich
    46. Ordo?ez Casado B (1998) Geochronological studies of the pre-mesozoic basement of the Iberian Massif: the Ossa-Morena and the Allochtonous Complexes within the Central Iberian zone. PhD thesis, ETH of Zürich
    47. Ortega L, Moreno T, Lunar R, Prichard H, Sierra J, Bomatí O, Fisher P, García Palomero F (1999) Minerales del grupo del platino y fases asociadas en el depósito de Ni–Cu-EGP) de Aguablanca, SW Espa?a. Geogaceta, pp 155-58
    48. Ortega L, Lunar R, Garcia-Palomero F, Moreno T, Martin-Estevez JR, Prichard HM, Fisher PC (2004) The Aguablanca Ni–Cu–PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can Mineral 42:325-50. doi:10.2113/gscanmin.42.2.325 CrossRef
    49. Pang KN, Arndt NT, Svensen H, Planke S, Polozov A, Polteau S, Iizuka Y, Chung S-L (2013) A petrologic, geochemical and Sr–Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contrib Miner Petrol 165:683-04. doi:10.1007/s00410-012-0830-9 CrossRef
    50. Pi?a R, Lunar R, Ortega L, Gervilla F, Alapieti T, Martin C (2006) Petrology and geochemistry of mafic–ultramafic fragments from the Aguablanca (SW Spain) Ni–Cu ore breccia: implications for the genesis of the deposit. Econ Geol 42:865-81. doi:10.2113/gsecongeo.101.4.865 CrossRef
    51. Pi?a R, Romeo I, Ortega L, Lunar R, Capote R, Gervilla F, Tejero R, Quesada C (2010) Origin and emplacement of the Aguablanca magmatic Ni–Cu-PGE) sulfide deposit, SW Iberia: a multidisciplinary approach. GSA Bull 122:915-25. doi:10.1130/B30046.1 CrossRef
    52. Pi?a R, Gervilla F, Barnes S-J, Ortega L, Lunar R (2012) Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): evidence from a LA-ICP-MS study. Chem Geol 302:61-5. doi:10.1016/j.chemgeo.2011.02.010 CrossRef
    53. Ribeiro A, Quesada C, Dallmeyer RD (1990) Geodynamic evolution of the Iberian Massif. Pre-Mesozoic Geology of Iberia, pp 399-09
    54. Romeo I, Lunar R, Capote R, Quesada C, Dunning GR, Pina R, Ortega L (2006) U-Pb age constraints on Variscan magmatism and Ni-Cu-PGE metallogeny in the Ossa-Morena Zone (SW Iberia). Geol Soc Lond 163:837-46. doi:10.1144/0016-76492005-065 CrossRef
    55. Romeo I, Tejero R, Capote R, Lunar R (2008) 3D gravity modelling of the Aguablanca Stock, tectonic control and emplacement of a Variscan gabbronorite bearing a Ni–Cu–PGE ore, SW Iberia. Geol Mag 145:1-5. doi:10.1017/S0016756808004470
    56. Sánchez Carretero R, Eguíluz L, Pascual E, Carracedo M (1990) Ossa-Morena Zone. Igneous rocks. Pre-Mesozoic Geology of Iberia, Springer, pp 292-13
    57. Sánchez-García T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian-Ordovician rift-related igneous rocks (Ossa-Morena zone, SW Iberia): Tectonophysics, vol 265. doi:10.1016/S0040-1951(03)00024-6
    58. Santos JF, Mata J, Gon?alves F, Munhá J (1987) Contribui??o para o conhecimento geológico-petrológico da regi?o de Santa Susana: o complexo vulcano-sedimentar da Toca da Moura. Comunicacoes dos Servicos Geologicos de Portugal 73:29-8
    59. Sch?fer HJ (1990) Geochronological Investigations in the Ossa-Morena Zone. SW Spain University of Zurich, Zurich
    60. Spiering ED, Rodriguez Pevida L, Castelo JM, Garcia Nieto J, Martinez Chaparro C (2005) In: Rhoden HN, Steininger RC, Vikre PG (eds) Geological society of nevada symposium: window to the world
    61. Suárez S, Prichard HM, Velasco F, Fisher PC, McDonald I (2010) Alteration of platinum-group minerals and dispersion of platinum-group elements during progressive weathering of the Aguablanca Ni-Cu deposit, SW Spain. Mineralium Deposita 45:331-50. doi:10.1007/s00126-009-0275-x CrossRef
    62. Svensen H, Planke S, Malthe-S?renssen A, Jamtveit B, Myklebust R, Rey TRE, Sebastian S (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542-45. doi:10.1038/nature02566 CrossRef
    63. Svensen H, Planke S, Chevallier L, Malthe-S?renssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett 256:554-66. doi:10.1016/j.epsl.2007.02.013 CrossRef
    64. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490-00. doi:10.1016/j.epsl.2008.11.015 CrossRef
    65. Tornos F, Chiaradia M (2004) Plumbotectonic evolution of the Ossa Morena zone, Iberian Peninsula: tracing the influence of mantle-crust interaction in ore-forming processes. Econ Geol 99:965-85. doi:10.2113/gsecongeo.99.5.965 CrossRef
    66. Tornos F, Casquet C, Galindo C, Canales A, Velasco F (1999) The genesis of the Variscan ultramafic-hosted magmatic Cu–Ni deposit of Aguablanca, SW Spain. Mineral Deposits: Processes to Processing. Balkema, Rotterdam, pp 795-98
    67. Tornos F, Casquet C, Galindo C, Velasco F, Canales A (2001) A new style of Ni-Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain. Miner Depos 36:700-06. doi:10.1007/s001260100204 CrossRef
    68. Tornos F, Casquet C, Relvas JMRS, Barriga FJAS, Sáez R (2002) The relationship between ore deposits and oblique tectonics: the SW Iberian Variscan Belt. Geol Soc Lond Special Publ 204:179-98. doi:10.1144/GSL.SP.2002.204.01.11 CrossRef
    69. Tornos F, Casquet C, Relvas J (2005) Transpressional tectonics, lower crust decoupling and intrusion of deep mafic sills: a model for the unusual metallogenesis of SW Iberia. Ore Geol Rev 27:133-63 CrossRef
    70. Tornos F, Galindo C, Casquet C, Rodríguez Pevida L, Martínez C, Martínez E, Velasco F, Iriondo A (2006) The Aguablanca Ni-Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex. Miner Depos 41:737-69. doi:10.1007/s00126-006-0090-6 CrossRef
    71. Velasco F (1976) Mineralogía y metalogenia de los skarns de Santa Olalla (Huelva). Doctoral Thesis, University of Bilbao, Bilbao
    72. Velasco F, Amigo JM (1981) Mineralogy and origin of the skarn from Cala (Huelva, Spain). Econ Geol 76:719-27. doi:10.2113/gsecongeo.76.3.719 CrossRef
    73. Wenzel T, Baumgartner LP, Brugmann GE, Konnikov EG, Kislov EV (2002) Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia). J Petrol 43:2049-074. doi:10.1093/petrology/43.11.2049 CrossRef
    74. Whitney PR, Olmsted JF (1998) Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA. Geochim Cosmochim Acta 62:2965-977. doi:10.1016/S0016-7037(98)00230-0 CrossRef
  • 作者单位:Clément Ganino (1)
    Nicholas T. Arndt (2)
    Catherine Chauvel (2)
    Fernando Tornos (3)

    1. CNRS/IRD, Observatoire de la C?te d’Azur, Laboratoire Géoazur, Université de Nice -Sophia Antipolis, 250 rue Albert Einstein, 06560, Valbonne, France
    2. ISTerre, Maison des géosciences, BP 53X, 38041, Grenoble Cedex, France
    3. Consejo Superior de Investigaciones Científicas - Centro de Astrobiologia (CSIC-INTA), Crta. Ajalvir Km. 4, 28850, Torrejon de Ardoz - Madrid, Spain
  • ISSN:1432-0967
文摘
Analysis of magmatic and sedimentary rocks of several large igneous provinces has demonstrated that the release of gas during plutonic-metamorphic processes may be linked to global climate change and mass extinctions. Aguablanca, one of the largest Cu–Ni–PGE deposits in Europe, formed during the Variscan orogeny when a mafic magma intruded limestones and shales, creating a contact aureole composed of marble, skarn and hornfels. Our petrological and geochemical investigation of the aureole provides evidence that a combination of the two processes led to the formation of the ore deposit: The assimilation of terrigenous sediments supplied S to the magma while the assimilation of carbonates changed the oxygen fugacity and decreased the solubility of sulfur in the magma. The metamorphic assemblages in the contact aureole are directly related to heterogeneity of the protolith and particularly to the original proportions of calcite and clay. We modeled carbon dioxide degassing during contact metamorphism and showed that pure limestone is relatively unproductive because of its high reaction temperature. The presence of clay, however, leads to the formation of calc-silicates and significantly enhances CO2 degassing. Our estimations suggest that degassing of the Aguablanca contact aureole released about 74.8?Mt of CO2, a relatively low volume that we attribute to the composition of the host rock, mainly a pure limestone. A far larger volume of carbon dioxide was emitted by the contact metamorphism of dolostones in the contact aureole of Panzhihua (part of Emeishan large igneous province, SW China). We propose that the level of emission of carbon dioxide depends strongly on the nature of the protolith and has to be considered when predicting environmental impact during the emplacement of large igneous provinces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700