Active vibration control of an arbitrary thick smart cylindrical panel with optimally placed piezoelectric sensor/actuator pairs
详细信息    查看全文
  • 作者:Seyyed M. Hasheminejad ; A. Oveisi
  • 关键词:Vibration suppression ; Piezolaminated panel ; Exact solution ; System identification ; Optimal placement ; Genetic algorithm (GA) ; Optimal control
  • 刊名:International Journal of Mechanics and Materials in Design
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:1-16
  • 全文大小:1,775 KB
  • 参考文献:Abaqus, (2012), Analysis user’s manual, Version 6
    Alibeigloo, A.: Exact solution of an FGM cylindrical panel integrated with sensor and actuator layers under thermomechanical load. Smart Mater. Struct. 20(3), 035002 (2011)CrossRef
    Alkhatib, R., Golnaraghi, M.F.: Active structural vibration control: A review. Shock Vib. Dig. 35(5), 367–383 (2003)CrossRef
    Bailey, T., Hubbard, J.E.: Distributed piezoelectric-polymer active vibration control of a cantilever beam. J. Guid. Control Dynam. 8(5), 605–611 (1985)CrossRef MATH
    Benjeddou, A.: Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments. J. Vib. Control 7(4), 565–602 (2001)CrossRef MATH
    Bodaghi, M., Shakeri, M.: An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads. Compos. Struct. 94(5), 1721–1735 (2012)CrossRef
    Cady, W.G.: Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. Dover Publications, New York (1946)
    Cai, J.B., Chen, W.Q., Ye, G.R., Ding, H.J.: On natural frequencies of a transversely isotropic cylindrical panel on a kerr foundation. J. Sound Vib. 232(5), 997–1004 (2000)CrossRef
    Chen, W.Q., Jung, J.P., Lee, K.Y.: Static and dynamic behavior of simply-supported cross-ply laminated piezoelectric cylindrical panels with imperfect bonding. Compos. Struct. 74(3), 265–276 (2006)CrossRef
    Chen, W.Q., Ying, J., Yang, Q.D.: Free vibrations of transversely isotropic cylinders and cylindrical shells. J. Press. Vessel Technol. Asme. 120(4), 321–324 (1998)CrossRef
    Crawley, E.F., de Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)CrossRef
    Ding, H.J., Chen, W.Q.: Three Dimensional Problems of Piezoelectricity. Nova Science Publishers, New York (2001)
    Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33(16), 2283–2298 (1996)CrossRef MATH
    Ding, H.J., Xu, R.Q., Chen, W.Q.: Free vibration of transversely isotropic piezoelectric circular cylindrical panels. Int. J. Mech. Sci. 44(1), 191–206 (2002)CrossRef MATH
    Gawronski, W.K.: Advanced Structural Dynamics and Active Control of Structures. Springer, USA (2004)CrossRef
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Professional, Boston, USA (1989)MATH
    Hac, A., Liu, L.: Sensor and actuator location in motion control of flexible structures. J. Sound Vib. 167(2), 239–261 (1993)CrossRef MATH
    Han, J.H., Lee, I.: Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms. Smart Mater. Struct. 8(2), 257–267 (1999)CrossRef MathSciNet
    Iorga, L., Baruh, H., Ursu, I.: A review of H∞ robust control of piezoelectric smart structures. Appl. Mech. Rev. 61(1–6), 0408021–04080215 (2008)
    Kapuria, S., Kumari, P.: Three-dimensional piezoelasticity solution for dynamics of cross-ply cylindrical shells integrated with piezoelectric fiber reinforced composite actuators and sensors. Compos. Struct. 92(10), 2431–2444 (2010)CrossRef
    Kapuria, S., Kumari, P., Nath, J.K.: Analytical piezoelasticity solution for vibration of piezoelectric laminated angle-ply circular cylindrical panels. J. Sound Vib. 324(3–5), 832–849 (2009)CrossRef
    Karnaukhov, V.G., Kozlov, V.I., Karnaukhova, T.V.: Influence of dissipative heating on active damping of forced resonance vibrations of a flexible viscoelastic cylindrical panel by piezoelectric actuators. J. Math. Sci. 183(2), 205–221 (2012)CrossRef MathSciNet
    Korkmaz, S.: A review of active structural control: Challenges for engineering informatics. Comput. Struct. 89(23–24), 2113–2132 (2011)CrossRef
    Lewis, L.F., Syrmos, V.L.: Optimal Control, 2nd edn. Wiley-Interscience, New York, USA (1995)
    Ljung, L.: System Identification: Theory for the User. Prentice Hall, New Jersey, USA (1999)CrossRef
    Maciejowski, J.M.: Multivariable Feedback Design. Addison Wesley, Great Britain (1989)MATH
    Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems). MIT Press, Cambridge, Massachusetts, USA (1998)
    Ootao, Y., Tanigawa, Y.: Transient piezothermoelasticity for a cylindrical composite panel composed of cross-ply and piezoelectric laminae. Int. J. Mech. Sci. 44(9), 1861–1877 (2002)CrossRef MATH
    Ootao, Y., Tanigawa, Y.: Control of transient thermoelastic displacement of an angle-ply laminated cylindrical panel bonded to a piezoelectric layer. Appl. Math. Comput. 148(1), 263–286 (2004)CrossRef MathSciNet MATH
    Ootao, Y., Tanigawa, Y.: Transient piezothermoelastic analysis of a cross-ply laminated cylindrical panel bonded to a piezoelectric actuator. Appl. Math. Model. 29(4), 321–339 (2005)CrossRef MATH
    Ootao, Y., Tanigawa, Y.: Transient piezothermoelastic problems of smart composite structures bonded to a piezoelectric layer. Struct. Control Health 13(6), 1028–1051 (2006)CrossRef
    Overschee, V.P., De Moor, B.: Continuous-time frequency domain subspace system identification. Signal Process. 52(2), 179–194 (1996)CrossRef MATH
    Park, C.H.: Dynamics modeling of beams with shunted piezoelectric elements. J. Sound Vib. 268(1), 115–129 (2003)CrossRef
    Poli, R., Langdon, W.B., Mcphee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises, UK (2008)
    Ray, M.C.: Smart damping of laminated thin cylindrical panels using piezoelectric fiber reinforced composites. Int. J. Solids Struct. 44(2), 587–602 (2007)CrossRef MATH
    Ray, M.C., Pradhan, A.K.: Active damping of laminated thin cylindrical composite panels using vertically/obliquely reinforced 1–3 piezoelectric composites. Acta Mech. 209(3–4), 201–218 (2010)CrossRef MATH
    Ray, M.C., Rao, K.M., Samanta, B.: Exact analysis of coupled electroelastic behaviour of a piezoelectric plate under cylindrical bending. Compos. Struct. 45(4), 667–677 (1992)CrossRef MATH
    Saravanos, D.A., Christoforou, A.P.: Low-energy impact of adaptive cylindrical piezoelectric-composite shells. Int. J. Solids Struct. 39(8), 2257–2279 (2002)CrossRef MATH
    Saravanos, D.A., Heyliger, P.R.: Mechanics and computational models for laminated piezoelectric beams, plates, and shells. Appl. Mech. Rev. 52(10), 305–320 (1999)CrossRef
    Shahbazi, Y., Chenaghlou, M.R., Abedi, K., Khosrowjerdi, M.J., Preumont, A.: A new energy harvester using a cross-ply cylindrical membrane shell integrated with PVDF layers. Microsyst. Technol. 18(12), 1981–1989 (2012)CrossRef
    Sharma, J.N., Pal, M., Chand, D.: Three-dimensional vibration analysis of a piezothermoelastic cylindrical panel. Int. J. Eng. Sci. 42(15–16), 1655–1673 (2004)CrossRef
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control Analysis and Design. Wiley, New York, USA (2005)
    Soldatos, K.P., Hadhgeorgiou, V.P.: Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. J. Sound Vib. 137(3), 369–384 (1990)CrossRef MATH
    Sunar, M., Rao, S.S.: Recent advances in sensing and control of flexible structures via piezoelectric materials technology. Appl. Mech. Rev. 52(1), 1–16 (1999)CrossRef
    Tsai, Y.H., Wu, C.P.: Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46(9), 843–857 (2008)CrossRef MATH
    Tzou, H.S.: Distributed vibration control and identification of coupled elastic/piezoelectric shells: Theory and experiment. Mech. Syst. Signal. Process. 5(3), 199–214 (1991)CrossRef
    Tzou, H.S., Howard, R.V.: Piezothermoelastic thin shell theory applied to active structures. J. Vib. Acoust. 116(3), 295–302 (1994)CrossRef
    Tzou, H.S., Tseng, C.I.: Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach. J. Sound Vib. 138(1), 17–34 (1990)CrossRef
    Tzou, H.S., Tseng, C.I.: Distributed modal identification and vibration control of continua. Piezoelectric finite element formulation and analysis. J. Dyn. Syst T. ASME. 113(3), 500–505 (1991)CrossRef
    Wu, C.P., Tsai, Y.H.: Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation. J. Eng. Math. 63(1), 95–119 (2009)CrossRef MathSciNet MATH
    Yu, J.G., Wu, B., Chen, G.Q.: Wave characteristics in functionally graded piezoelectric hollow cylinders. Arch. Appl. Mech. 79(9), 807–824 (2009)CrossRef MATH
    Zheng, S.J., Dai, F., Song, Z.: Active control of piezothermoelastic FGM shells using integrated piezoelectric sensor/actuator layers. Int. J. Appl. Electromagn. 30(1–2), 107–124 (2009)MATH
  • 作者单位:Seyyed M. Hasheminejad (1)
    A. Oveisi (1)

    1. Acoustics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, 16846-13114, Tehran, Iran
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Engineering Design
    Continuum Mechanics and Mechanics of Materials
    Materials Science
  • 出版者:Springer Netherlands
  • ISSN:1573-8841
文摘
Active vibration suppression of a simply supported, arbitrarily thick, transversely isotropic circular cylindrical host panel, integrated with spatially distributed piezoelectric actuator and sensor layers, is investigated based on the linear three dimensional exact piezo-elasticity theory. To assist control system design, system identification is conducted by applying a frequency domain subspace approximation method based on N4SID algorithm using the first few structural modes of the system. The state space model is constructed from system identification and used for state estimation and development of control algorithm. The optimal electrode configuration for the collocated piezoelectric actuator–sensor pair is found by applying a genetic optimization procedure based on maximization of a quantifiable objective function considering the controllability, observability and spillover prevention of the identified system. A linear quadratic Gaussian (LQG) optimal controller is subsequently designed and simulated based on the identified model of optimally configured smart structure in order to actively control the system response in both frequency and time domains. The dynamic performance and effectiveness of the optimized vibration control system is demonstrated for two different types of external mechanical excitations (i.e., impulsive load and white noise disturbance). The accuracy of dynamic analysis is established with the aid of a commercial finite element package and the data available in the literature. Keywords Vibration suppression Piezolaminated panel Exact solution System identification Optimal placement Genetic algorithm (GA) Optimal control

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700