The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils
详细信息    查看全文
  • 作者:Xiaodong Zhang ; Zhaoliang Song ; Kim McGrouther ; Jianwu Li…
  • 关键词:Bamboo forest ; PhytOC ; Phytolith ; Soil profile
  • 刊名:Journal of Soils and Sediments
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:16
  • 期:2
  • 页码:461-466
  • 全文大小:421 KB
  • 参考文献:Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem Cy 20
    Carver R, Nash J (2011) Doing data analysis with SPSS: version 18.0. Cengage Learning
    Casey W, Kinrade S, Knight C, Rains D, Epstein E (2004) Aqueous silicate complexes in wheat, Triticum aestivum L. PlantCell Environ 27:51–54
    Chen LM, Zhang GL (2011) Phytoliths and its occluded organic carbon in a stagnic anthrosols chronosequence. Chinese J Soil Sci 42:1025–1030
    Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112CrossRef
    Drees LR, Wilding LP, Smeck NE, Senkayi AL (1989) Silica in soils: quartz and disordered silica polymorphs. In: Weed SB (ed) Minerals in Soil Environments. Soil Science Society of America Madison Wisconsin, USA, pp 913–974
    Falkowski P, Scholes RJ, Eea B, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296CrossRef
    Guo QR, Yang GY, Du TZ, Shi JM (2005) Carbon character of Chinese bamboo forest. World Bamboo and Rattan 3:25–28
    Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292CrossRef
    Huang ZT, Li YF, Jiang PK, Chang SX, Song ZL, Liu J, Zhou GM (2014) Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils. Sci Rep4
    IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome
    Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696CrossRef
    Jones L, Handreck K (1965) Studies of silica in the oat plant. Plant Soil 23:79–96CrossRef
    Jones L, Milne A (1963) Studies of silica in the oat plant. Plant Soil 18:207–220CrossRef
    Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems–a review. Mitig Adapt StratGl 11:395–419CrossRef
    Li ZC, Yang XS, Zhou BZ, Cai XJ, Sun JJ (2010) Carbon dynamics of litter-fall under six forest stands in subtropical China. J Nanjing For Univ(Nat Sci Ed) 34
    Li ZM, Song ZL, Li BL (2013a) The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Applied Geochem 37:117–124CrossRef
    Li ZM, Song ZL, Parr JF, Wang HL (2013b) Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant Soil 370:615–623CrossRef
    Li BL, Song ZL, Wang HL, Guo FS, Gui RY, Yang XM, Song RS (2014) Phytolith carbon sequestration in bamboos of different ecotypes: a case study in China. Chinese Sci Bull 59:4816–4822CrossRef
    Lu RK (1999) Soil agricultural chemical analysis method. Chinese Agriculture and Sciences Press, Beijing (in Chinese)
    Meunier JD, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838CrossRef
    Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Bio Biochem 37:117–124CrossRef
    Parr JF, Sullivan LA, Chen BH, Ye GF, Zheng WP (2010) Carbon bio-sequestration within the phytoliths of economic bamboo species. Global Change Biol 16:2661–2667CrossRef
    Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman Altamira
    Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348(6298):232–234CrossRef
    Song ZL, Liu HY, Si Y, Yin Y (2012a) The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Global Change Biol 18:3647–3653CrossRef
    Song ZL, Wang HL, Strong PJ, Li ZM, Jiang PK (2012b) Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: implications for biogeochemical carbon sequestration. Earth-Sci Rev 115:319–331CrossRef
    Song ZL, Liu HY, Li BL, Yang XM (2013a) The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration. Global Change Biol 19:2907–2915CrossRef
    Song ZL, Parr JF, Guo FS (2013b) Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization. PLoS One 8:e73747CrossRef
    Song ZL, Müller K, Wang HL (2014) Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems. Earth-Sci Rev 139:268–278CrossRef
    Street‐Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457CrossRef
    Wilding LP, BROWN RE, Holowaychuk N (1967) Accessibilityandpropertiesofoccludedcarbon inbiogenetic opal. Soil Sci 103:56–61CrossRef
    Ying YQ, Xiang TT, Li YF, Wu JS, Jiang PK (2015) Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China. J Nat Resour 30:133–140
    Zhou GM, Meng CF, Jiang PK, Xu QF (2011) Review of carbon fixation in bamboo forests in China. Bot Rev 77:262–270CrossRef
    Zuo XX, Lü HY (2011) Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chinese Sci Bull 56:3451–3456CrossRef
    Zuo XX, Lu HY, Gu ZY (2014) Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant Soil 374:223–232CrossRef
  • 作者单位:Xiaodong Zhang (1)
    Zhaoliang Song (1) (2)
    Kim McGrouther (3)
    Jianwu Li (1)
    Zimin Li (4)
    Ning Ru (1)
    Hailong Wang (1) (5)

    1. School of Environmental and Resource Sciences, Zhejiang Agricultural and Forestry University, Lin’an, Zhejiang, 311300, China
    2. Institute of the Surface-Earth System Science Research, Tianjin University, Tianjin, 300072, China
    3. Scion, Private Bag 3020, Rotorua, 3046, New Zealand
    4. Soil Science and Environment Geochemistry, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2/L7.05.10, 1348, Louvain-la-Neuve, Belgium
    5. Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an, Hangzhou, Zhejiang, 311300, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Soil Science and Conservation
    Environment
    Environmental Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7480
文摘
Purpose Occlusion of carbon in phytoliths is an important biogeochemical carbon sequestration mechanism and plays a significant role in the global biogeochemical carbon cycle and atmospheric carbon dioxide (CO2) concentration regulation at a millennial scale. However, few studies have focused on the storage of phytolith and phytolith-occluded carbon (PhytOC) in subtropical forest soils.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700