XAS STUDY OF Fe MINERALOGY IN A CHRONOSEQUE
详细信息   在线全文   PDF全文下载
摘要

The characterization of poorly crystalline minerals formed by weathering is difficult using conventional techniques. The objective of this study was to use cutting-edge spectroscopic techniques to characterize secondary Fe mineralogy in young soils formed in basaltic cinders in a cool, arid environment. The mineralogy of a chronosequence of soils formed on 2, 6, and 15 thousand year old basaltic cinders at Craters of the Moon National Monument (COM) was examined using synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy in combination with selective extractions. Fe K-edge XAFS is useful for determining speciation in poorly crystalline materials such as young weathering products. Over 86% of Fe in the soil clay fractions was contained in poorly crystalline materials, mostly in the form of ferrihydrite, with the remainder in a poorly crystalline Fe-bearing smectite. The XAFS spectra suggest that ferrihydrite in the 15 ka soil clay is more resistant to ammonium oxalate (AOD) extraction than is ferrihydrite in the younger materials. Fe in the poorly crystalline smectite is subject to dissolution during citrate-bicarbonate-dithionite (CBD) extraction. The results indicate that relatively few mineralogical changes occur in these soils within the millennial time frame and under the environmental conditions associated with this study. Although the secondary mineral suite remains similar in the soils of different ages, ferrihydrite crystallinity appears to increase with increasing soil age.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700