Versatile Monazite: resolving geological records and solving challenges in materials science
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:Elizabeth J. Catlos
  • Publisher:Mineralogical Society of America
  • Date:2013-05-01
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2013.4336
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:98
  • issue:5-6
  • firstpage:819
  • section:Versatile Monazite
摘要

With the advent of techniques that preclude mineral separation, ages from specific compositional domains in monazite [(Ce,La,Th)PO4] have provided a wealth of information regarding the timing of the geologic evolution of numerous regions. However, confusion can arise when single grains show large differences in age that fail to correlate to chemistry or location within the monazite. Generalizations that lead to incorrect age interpretations include that monazite zoning in Y, Th, and/or the rare earth elements (REE) always identify: (1) distinct tectonic events; (2) environment of crystallization; and (3) provenance of detrital grains. Increasing Th contents in monazite do not always reflect: (1) increasing grade in metamorphic grains; (2) changes in silicate melt composition in igneous grains; (3) make the mineral more susceptible to alteration; nor (4) control the mineral’s uptake of REE. Metamorphic monazites from Himalayan garnet-bearing rocks with coexisting allanite show no relationship between Th content and REE. Instead, chondrite-normalized REE patterns of the allanite mirror those of the monazite, indicating the variations are related to the reactant that formed the mineral. Generalizations about Pb behavior in monazite remain problematic. Incorporation of Pb into monazite has thus far been precluded by experimental studies, yet common Pb has been measured in many studies of natural monazite. A clear understanding about controls of monazite composition and the role of the chemical and/or pressure-temperature (P-T) environment of the rocks in which it forms is required to correctly interpret the meaning of the mineral’s age(s).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700