Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis
详细信息查看全文 | 推荐本文 |
摘要
Near infrared (NIR) spectroscopy based on effective wavelengths (EWs) and chemometrics was proposed to discriminate the varieties of fruit vinegars including aloe, apple, lemon and peach vinegars. One hundred eighty samples (45 for each variety) were selected randomly for the calibration set, and 60 samples (15 for each variety) for the validation set, whereas 24 samples (6 for each variety) for the independent set. Partial least squares discriminant analysis (PLS-DA) and least squares-support vector machine (LS-SVM) were implemented for calibration models. Different input data matrices of LS-SVM were determined by latent variables (LVs) selected by explained variance, and EWs selected by x-loading weights, regression coefficients, modeling power and independent component analysis (ICA). Then the LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS-DA model, and the optimal LS-SVM model was achieved with EWs (4021, 4058, 4264, 4400, 4853, 5070 and 5273 cm−1) selected by regression coefficients. The determination coefficient (R2), RMSEP and total recognition ratio with cutoff value ±0.1 in validation set were 1.000, 0.025 and 100%, respectively. The overall results indicted that the regression coefficients was an effective way for the selection of effective wavelengths. NIR spectroscopy combined with LS-SVM models had the capability to discriminate the varieties of fruit vinegars with high accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700