Opposite effects of low versus high dose haloperidol treatments on spontaneous and apomorphine induced motor behavior: Evidence that at a very low dose haloperidol acts as an indirect dopamine agonist
详细信息查看全文 | 推荐本文 |
摘要
Anti-psychotic drugs are antagonists at the dopamine D2 receptors and repeated administration can lead to the development of dopamine receptor supersensitivity. In two experiments, separate groups of rats were administered 10 daily low or high doses of the typical anti-psychotic drug haloperidol (0.03 or 1.0 mg/kg). The high dose decreased locomotion whereas, the low dose increased locomotion. After 5 days of withdrawal, all groups received 2.0 mg/kg apomorphine on 5 successive days. The apomorphine treatments given to the vehicle group generated a progressive locomotion sensitization effect and this effect was potentiated by pre-exposure to 0.03 mg/kg haloperidol. Initially, the prior high dose of haloperidol exaggerated the apomorphine locomotor stimulant effect but with repeated apomorphine treatments desensitization developed. Following a 5-day withdrawal period an apomorphine challenge test was conducted and apomorphine sensitization was absent in the haloperidol high dose pre-exposure group but potentiated in the low dose pre-exposure group. In the second replication experiment a conditioning test instead of a sensitization challenge test was conducted 5 days after completion of the 5-day apomorphine treatment protocol. The repeated apomorphine treatments induced conditioned hyper- locomotion and this conditioned effect was prevented by the prior high dose haloperidol pre-exposure but enhanced by the prior low dose haloperidol pre-exposure. Two new key findings are (a) that a low dose haloperidol regimen can function as a dopamine agonist and these effects persist after withdrawal and (b) that repeated apomorphine treatments can desensitize D2 receptors previously sensitized by a high dose haloperidol treatment regimen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700