Adaptive grid refinement for a model of two confined and interacting atoms
详细信息查看全文 | 推荐本文 |
摘要
We have applied adaptive grid refinement to solve a two-dimensional Schrödinger equation in order to study the feasibility of a quantum computer based on extremely-cold neutral alkali-metal atoms. Qubits are implemented as motional states of an atom trapped in a single well of an optical lattice of counter-propagating laser beams. Quantum gates are constructed by bringing two atoms together in a single well leaving the interaction between the atoms to cause entanglement. For special geometries of the optical lattices and thus shape of the wells, quantifying the entanglement reduces to solving for selected eigenfunctions of a Schrödinger equation that contains a two-dimensional Laplacian, a trapping potential that describes the optical well, and a short-ranged interaction potential. The desired eigenfunctions correspond to eigenvalues that are deep in the interior of the spectrum where the trapping potential becomes significant. The spatial range of the interaction potential is three orders of magnitude smaller than the spatial range of the trapping potential, necessitating the use of adaptive grid refinement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700