The limitations of scaling laws in the prediction of performance in endurance events
详细信息查看全文 | 推荐本文 |
摘要
In the twentieth century, scientists have examined running speed over various distances, analyzing world records and studying the ability of an athlete to sustain a given speed. Assuming that running speed expresses the response of a non-linear multisystemic behavior, the relationship between these two variables (distance vs. velocity) can therefore be evaluated by applying scaling laws that fulfill the key principles of specificity and individuality of each athlete, yet responding to bioenergetic and functional patterns that are well-known to sports physiology. Since speed loss as distance increases exhibits fractal behavior, with small changes in the speed-reduction curve due to the effect of fatigue, it must be recognized that no universal scaling law can account, with acceptable precision, for the effect exerted by fatigue on potential speed at any given moment in a race. Power laws using a range of scaling exponents provide technical staff and athletes with a reliable, non-invasive tool for planning of training schedules, predicting athletes' performances over various distances and comparing the performance of specialists in different track events. The equations for the scaling laws for the distances investigated here were: V1500=15.00脳D鈭?.10 (R2=0.99); V3000=12.76脳D鈭?.08 (R2=0.99); V5000=11.55脳D鈭?.07 (R2=0.99); V10,000=11.59脳D鈭?.07 (R2=0.99); V21,095=10.78脳D鈭?.06 (R2=0.97); V42,175=10.27脳D鈭?.057 (R2=0.99).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700