Micromechanics of annulus-end plate integration in the intervertebral disc
详细信息查看全文 | 推荐本文 |
摘要

Background context

The intervertebral disc plays a major functional role in the spinal column, providing jointed flexibility and force transmission. The end plate acts as an important structural transition between the hard vertebral tissues and the compliant disc tissues and is therefore a region of potentially high stress concentration. The effectiveness of anchorage of the tough annulus fibers in the end plate will have a major influence on the overall strength of the motion segment. Failure of the end plate region is known to be associated with disc herniation.

Purpose

The aim of this study was to investigate the mechanism of anchorage of the annular fibers in the end plate.

Study design

A microstructural analysis of the annulus-end plate region was carried out using motion segments obtained from the lumbar spines of mature ovine animals.

Methods

Motion segments were fixed and then decalcified. Samples incorporating the posterior annulus-end plate were then removed and cryosectioned along the plane of one of the lamellar fiber directions to obtain oblique interlamellar sections. These sections were imaged in their fully hydrated state using differential interference contrast optical microscopy.

Results

The annular fiber bundles on entering the end plate are shown to subdivide into subbundles to form a three-dimensional multileaf morphology with each leaf separated by cartilaginous end plate matrix. This branched morphology increases the interface area between bundle and matrix in proportion to the number of subbundles formed.

Conclusions

Given both the limited thickness of the end plate and the intrinsic strength of the interface bond between bundle and end plate matrix, the branched morphology is consistent with a mechanism of optimal shear stress transfer wherein a greater strength of annular fiber anchorage can be achieved over a relatively short insertion distance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700