Dynamics of complex formation between biological and luminescent conjugated polyelectrolytes—a surface plasmon resonance study
详细信息查看全文 | 推荐本文 |
摘要
A water-soluble polythiophene, POWT, with zwitterionic peptide like side chains possess good characteristics for biosensor applications. The zwitterionic side chains of the polymer can couple to biomolecules via electrostatic and hydrogen bonding. This creates possibilities to imprint biomolecules to spin-coated polymer films with maintained functionality, and use the resulting matrix as a biosensor. Polymer-biomolecular interaction studies done with surface plasmon resonance (SPR) reveal a well performing sensor matrix with high affinity for DNA hybridizations as well as for protein detection. The responses are distinct and very specific. A directional dependence of antibodies binding to POWT layer has also been observed. The polymer films have also been characterized by optical methods. Emission and absorption measurements in different buffer systems confirm that the polymer matrix can undergo structural and conformational changes on surfaces. The dielectric function in the interval 300–800nm of POWT is reported, based on variable angle spectroscopic ellipsometry. This modeling reveals that a considerable amount of water is included in the material. The polymer layer possesses the characteristics needed for biochip applications and micro array techniques.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700