六铝酸盐结构及其在高温反应中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Structure of Hexaaluminate and Application in High-Temperature Reaction
  • 作者:朱燕燕 ; 岳宗洋 ; 边文 ; 刘瑞林 ; 马晓迅 ; 王晓东
  • 英文作者:Yanyan Zhu;Zongyang Yue;Wen Bian;Ruilin Liu;Xiaoxun Ma;Xiaodong Wang;School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi;Dalian Institute of Chemical Physics, Chinese Academy of Sciences;
  • 关键词:六铝酸盐 ; 金属取代 ; 高温催化剂 ; 氧载体 ; 催化燃烧 ; N_2O分解 ; 化学链 ; 构效关系
  • 英文关键词:hexaaluminate;;metal substitution;;high-temperature catalysts;;oxygen carriers;;catalytic combustion;;N_2O decomposition;;chemical looping;;relationship between structure and reaction performance
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:西北大学化工学院国家碳氢资源清洁利用国际科技合作基地陕北能源先进化工利用技术教育部工程研究中心陕西省洁净煤转化工程技术研究中心陕北能源化工产业发展协同创新中心;中国科学院大连化学物理研究所;
  • 出版日期:2018-12-24
  • 出版单位:化学进展
  • 年:2018
  • 期:v.30;No.224
  • 基金:国家自然科学基金项目(No.21303137,21536009,21676269);; 唐仲英基金会资助~~
  • 语种:中文;
  • 页:HXJZ201812018
  • 页数:11
  • CN:12
  • ISSN:11-3383/O6
  • 分类号:202-212
摘要
六铝酸盐因其特殊的层状结构具有高温热稳定性;晶格中Al~(3+)可被不同过渡金属和贵金属离子取代,具有活性组分可镶嵌性;镜面层排列疏松,为氧的优先扩散通道;以上结构特质为六铝酸盐在高温涉氧方面的应用奠定了坚实的基础。本综述从六铝酸盐的结构出发,详细讨论了六铝酸盐的结构类型(磁铅石型和β-Al_2O_3型)和金属取代对其微观结构(尤其是金属化学状态)的影响,并介绍了近年来六铝酸盐在高温涉氧反应,如CH_4催化燃烧、环保领域N_2O消除、航天推进级N_2O分解、甲烷化学链燃烧和重整中的应用,重点关注了六铝酸盐结构与性能的关联,最后对六铝酸盐未来研究方向作出展望。
        Hexaaluminate materials exhibit remarkable thermal stability due to their peculiar layered structure.The Al3 +ions in the hexaaluminate lattice can be substituted by transition or noble metals,giving rise to redox centers for a variety of reactions. Oxygen in the mirror plane of hexaaluminate is loosely packed,making it a preferential diffusion route of oxygen. All of these favor the application of hexaaluminate in high-temperature oxygen-involved reaction. In this review,the structure of hexaaluminate is firstly introduced. Furthermore,the effect of structure type( magnetoplumbite and β-Al_2O_3) and metal substitution on the microstructure of hexaaluminate( especially metal chemical state) are carefully described. Then w e discuss recent advances of hexaaluminate in high-temperature oxygen-involved reactions,such as,catalytic combustion of CH_4,process-gas N_2O abatement,decomposition of N_2O as a propellant,CH_4 chemical looping combustion and reforming,w ith a special emphasis on the relationship betw een the microstucture and reaction performance. At last,a brief summary and an outlook are given.
引文
[1] Machida M, Eguchi K, Arai H. J. Catal., 1987, 103: 385.
    [2] Janzen C M, Neurgaonkar R R. Mater. Res. Bull., 1981, 16: 519.
    [3] Smets B, Rutten, Hoeks G. J. Electr. Ochem. Soc., 1989, 136: 2219.
    [4] Kahn A, Lejus A M, Madsac M, Théry J, Vivien D. J. Appl. Phys.,1981, 52: 6864.
    [5] 张俊英(Zhang J Y), 张中太(Zhang Z T), 唐子龙(Tang Z L). 材料科学与工艺(Materials Science and Technology), 2002, 10: 213.
    [6] 戴德昌(Dai D C), 李沅英(Li Y Y), 蔡少华(Cai S H), 谢驭洲(Xie Y Z), 何汉波(He H B). 中国稀土学报(Journal of the Chinese Rare Earth Society), 1998, 16: 284.
    [7] 段华超(Duan H C), 刘源(Liu Y), 李增喜(Li Z X), 闻学兵(Wen X B).化工进展(Chemical Industry and Engineering Progress), 2004, 5: 486.
    [8] 武鹏(Wu P), 胡瑞生(Hu R S), 沈岳年(Shen Y N), 白雅琴(Bai Y Q).稀土(Chinese Rare Earths), 2003, 24: 74.
    [9] Li T, Zhang K, Liu S, Dou L X, Li Y D. Chin. J. Catal., 2007, 28: 783.
    [10] Gardnera T H, Spivey J J, Kugler E L, Pakhare D. Applied Catal. A: Gen., 2013, 455: 129.
    [11] 翟彦青(Zhai Y Q), 李永丹(Li Y D), 孟明(Meng M). 稀土(Chinese Rare Earths), 2004, 25: 58.
    [12] Li T, Li Y D. Ind. Eng. Chem. Res., 2008, 47: 1404.
    [13] Xu Z L, Ming Z, Bi Y L, Zhen K J. Catal. Lett., 2000, 64: 157.
    [14] Saber D, Lejus A M. Mater. Res. Bull., 1981, 16: 1325.
    [15] Zhu Y Y, Wang X D, Wang A Q, Wu G T, Wang J H, Zhang T. J. Catal., 2011, 283: 149.
    [16] Iyi N, Takekawa S, Kimura S. J. Solid State Chem., 1989, 83: 8.
    [17] Machida M, Sato A, Kijima T, Inoue H, Eguchi K, Arai H. Catal. Today, 1995, 26: 239.
    [18] 徐占林(Xu Z L), 林险峰(Lin X F), 李青仁(Li Q R), 洪军(Hong J), 刘延(Liu Y), 周广栋(Zhou G D), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 石油与天然气化工(Chemical Engineering of Oil and Gas), 2001, 30: 218.
    [19] Machida M, Eguchi K, Arai H. J.Catal., 1990, 123: 477.
    [20] 郑建东(Zheng J D), 任晓光(Ren X G). 材料导报(Materials Review), 2011, 25: 77.
    [21] Machida M, Eguchi K, Arai H. J. Catal., 1989, 120: 377.
    [22] Bellotto M, Artioli G, Cristiani C, Forzatti P, Groppi G. J. Catal., 1998, 179: 597.
    [23] Artizzu-Duart P, Brullé Y, Gaillard F, Garbowski E, Guilhaume N, Primet M. Catal. Today., 1999, 54: 181.
    [24] Groppi G, Cristiani C, Forzatti P. Appl. Catal. B, 2002, 35: 137.
    [25] Groppi G, Cristiani C, Forzatti P, Bellotto M. J. Mater. Sci., 1994, 29: 3441.
    [26] Yalfani M S, Santiago M, Pérez-Ramírez J. J. Mater. Chem., 2007, 17: 1222.
    [27] Zhu Y Y, Wang X D, Zhang Y, Wang J H, Huang Y Q, Kappenstein C, Zhang T. Appl. Catal. A, 2011, 409/410: 194.
    [28] Zhu S M, Wang X D, Wang A Q, Cong Y, Zhang T. Chem. Commun., 2007, 17: 1695.
    [29] Kikuchi R, Iwasa Y, Takeguchi T, Eguchi K. Appl. Catal. A, 2005, 281: 61.
    [30] Pérez-Ramírez J, Santiago M. Chem.Commun., 2007, 38: 619.
    [31] Tian M, Wang A Q, Wang X D, Zhu Y Y, Zhang T. Appl. Catal. B, 2009, 92: 437.
    [32] Artizzu-Duart P, Millet J M, Guilhaume N, Garbowski E, Primet M. Catal. Today, 2000, 59: 163.
    [33] Groppi G, Cristiani C, Forzatti P. J. Catal., 1997, 168: 95.
    [34] Zhu Y Y, Wang X D, Wu G T, Huang Y Q, Zhang Y, Wang J H, Zhang T. J. Phys. Chem. C, 2012, 116: 671.
    [35] Lietti L, Cristiani C, Groppi G, Forzatti P. Catal. Today, 2000, 59: 191.
    [36] Laville F, Perrin M, Lejus A M, Gasperin M, Moncorge R, Vivien D. J. Solid State Chem., 1986, 65: 301.
    [37] Gasperin M, Saine M C, Kahn A, Laville F, Lejus A M. J. Solid State Chem., 1984, 54: 61.
    [38] McCarty J G, Gusman M, Lowe D M, Hildenbrand D L, Lau K N. Catal. Today, 1999, 47: 5.
    [39] Zhang Y, Wang X D, Zhu Y Y, Liu X, Zhang T. Appl. Catal. B, 2013, 129: 382.
    [40] Zhu S M, Wang X D, Wang A Q, Zhang T. Catal. Today, 2008, 131: 339.
    [41] Machida M, Eguchi K, Arai H. J. Am. Ceram. Soc., 2010, 71: 1142.
    [42] Machida M, Eguchi K, Arai H. J. Catal., 1987, 18: 385.
    [43] Eguchi K, Arai H. Catal. Today, 1996, 29: 379.
    [44] 郑建东(Zheng J D), 侯豹(Hou B), 葛秀涛(Ge X T), 章守权(Zhang S Q). 材料导报(Materials Review), 2012, 26: 102.
    [45] 蒋政(Jiang Z), 李进军(Li J J), 郝郑平(Hao Z P), 侯红霞(Hou H X), 许秀艳(Xu X Y), 胡春(Hu C). 催化学报(Chinese Journal of Catalysis), 2004, 25: 485.
    [46] Ren X G, Zheng J D, Song Y J. J. Fuel. Chem. Technol., 2011, 39: 717.
    [47] Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K. Catal. Today, 2000, 59: 69.
    [48] Sohn J M, Kang S K, Woo S I. J. Mol. Catal. A: Chem., 2002, 186: 135.
    [49] 翟彦青(Di Y Q), 李鑫刚(Li X G), 陈久岭(Chen J L), 李永丹(Li Y D). 化学通报(Chemistry Bulletin), 2005, 68: 145.
    [50] Kikuchi R, Takeda K, Sekizawa K, Sasaki K, Eguchi K. Appl. Catal. A, 2001, 218: 101.
    [51] Sadamori H, Tanioka T, Matsuhisa T. Catal. Today, 1995, 26: 337.
    [52] 李孟丽(Li M L), 杨晓龙(Yang X L), 唐立平(Tang L P), 熊绪茂(Xiong X M), 任嗣利(Ren S L), 胡斌(Hu B). 化学进展(Progress in Chemistry), 2012, 24: 1801.
    [53] 薛莉(Xue L), 贺泓(He H). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23: 664.
    [54] Santiago M, Pérez-Ramírez J. Environ. Sci. Technol., 2007, 41: 1704.
    [55] 宋永吉(Song Y J), 李翠清(Li C Q), 王虹(Wang H), 董留涛(Dong L T).工业催化(Industrial Catalysis). 2008, 16: 172.
    [56] Najera M, Solunke R, Gardner T, Veser G. Chen. Eng. Res. Des., 2011, 89: 1533.
    [57] Bhavsar S, Najera M, Veser G. Chem. Eng. Tchhonl., 2012, 35: 1281.
    [58] Huang Z, Jiang H Q, He F, Chen D Z, Wei G Q, Zhao K, Zheng A Q, Feng Y P, Zhao Z L, Li H B. J. Energy Chem., 2016, 25: 62.
    [59] 刘黎明(Liu L M), 赵海波(Zhao H B), 郑楚光(Zheng C G). 煤炭转化(Coal Conversion), 2006, 29: 83.
    [60] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20: 1306.
    [61] Zheng Y E, Li K Z, Wang H, Tian D, Wang Y H, Zhu X, Wei Y G, Zheng M, Luo Y M. Appl. Catal. B, 2017, 202: 51.
    [62] 宋涛(Song T), 沈来宏(Shen L H), 肖军(Xiao J), 高正平(Gao Z P), 顾海明(Gu H M), 张思文(Zhang S W). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2011, 39: 567.
    [63] 曾亮(Zeng L), 罗四维(Luo S W), 李繁星(Li F X), 范良士(Fan L S). 中国科学:化学(Scientia Sinica Chimica), 2012, 42: 260.
    [64] 黄振(Huang Z), 何方(He F), 赵坤(Zhao K), 郑安庆(Zheng A Q), 李海滨(Li H B), 赵增立(Zhao Z L). 化学进展(Progress in Chemistry), 2012, 24: 1599.
    [65] Tian M, Wang X D, Liu X, Wang A Q, Zhang T. AIChE J., 2016, 62: 792.
    [66] Tian M, Wang C J, Li L, Wang X D. AIChE J., 2017, 63: 2827.
    [67] Zhu Y Y, Liu W W, Sun X Y, Ma X X, Kang Y, Wang X D, Wang J. AIChE J., 2018, 64: 550.
    [68] Zhu Y Y, Sun X Y, Liu W W, Xue P, Tian M, Ma X X, Zhang T. Int. J. Hydrogen Energy, 2017, 42: 30509.