飞秒激光直写光量子逻辑门
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Femtosecond laser direct writing of optical quantum logic gates
  • 作者:张茜 ; 李萌 ; 龚旗煌 ; 李焱
  • 英文作者:Zhang Qian;Li Meng;Gong Qi-Huang;Li Yan;State Key Laboratory for Mesoscopic Physics,Department of Physics,Peking University and Collaborative Innovation Center of Quantum Matter;Collaborative Innovation Center of Extreme Optics,Shanxi University;
  • 关键词:量子逻辑门 ; 飞秒激光直写 ; 光波导 ; 定向耦合器
  • 英文关键词:quantum logic gate;;femtosecond laser direct writing;;optical waveguide;;directional coupler
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京大学物理学院人工微结构和介观物理国家重点实验室量子物质科学协同创新中心;山西大学极端光学协同创新中心;
  • 出版日期:2019-05-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2018YFB1107205,2016YFA0301302);; 国家自然科学基金(批准号:61590933,11474010,11627803)资助的课题~~
  • 语种:中文;
  • 页:WLXB201910012
  • 页数:16
  • CN:10
  • ISSN:11-1958/O4
  • 分类号:105-120
摘要
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.
        Unlike classical digital computers in which a bit can represent either 1 or 0 at any time, quantum computers use a two-level system, i.e., a qubit, to implement logical operations based on quantum mechanical laws, which can represent both values at once. Owing to the superposition property of qubits, quantum computers have natural parallel processing advantages and thus have potential to exceed the computational efficiency of classical computers for particular tasks. Quantum logic gates are the generalization of classical logic gates in computational networks. It has been proved that two-qubit quantum gates together with one-qubit quantum gates are adequate for constructing networks with any possible quantum computational property.Directional couplers are the most critical elementsfor constructing the quantum gates. In recent years, photonic quantum technologies have emerged as a promising experimental platform for quantum computing. Single photons have robust noise resistance, long coherence time, high transmission speed and great compatibility with other systems. They can be easily manipulated and encoded in any of several degrees of freedom, for example,polarization, path, spatial mode or time bin. Optical waveguide technology enables the realizing of complex optical schemes comprised of many elements with desired scalability, stability and miniaturization. Femtosecond laser direct writing of waveguide has been adopted as a powerful tool for integrated quantum photonics with characteristics of rapidness, cost-effectiveness, mask-less and single-step process. In particular, it has the ability to build arbitrary three-dimensional circuits directly inside bulk materials, which is impossible to achieve with conventional lithography. In this article we review the femtosecond laser writing and quantum characterization of directional coupler and important one-qubit and two-qubit optical quantum logic gates, such as Hadamard gate, Pauli-X gate, controlled-NOT gate, and controlled-Phase gate. The qubits in these gates are usually encoded through optical paths or polarizations of photons. The key to the realization of polarization-encoded one-qubit gates is to achieve flexible wave-plate operations, which is described in detail. Controlled-NOT gate and controlled-phase gate are the most crucial two-qubit gates in the linear optics computation and sometimes they can be converted into each other by adding some one-qubit gates or special superposition states. Many different kinds of waveguide circuits have been used to implement these two-qubit gates. The outlook and challenges for the femtosecond laser writing of three-qubit gates, such as Toffoli gate and Fredkin gate, are briefly introduced.
引文
[1]Bennett C H 1995 Phys.Today 48 24
    [2]Galindo A,Martin-Delgado M A 2002 Rev.Mod.Phys.74347
    [3]Fan H 2018 Acta Phys.Sin.67 120301(in Chinese)[范桁2018物理学报67 120301]
    [4]Ekert A K 1991 Phys.Rev.Lett.67 661
    [5]Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing Philadelphia,PA,USA,May 22-24,1996 p212
    [6]Spagnolo N,Vitelli C,Bentivegna M,Brod D J,Crespi A,Flamini F,Giacomini S,Milani G,Ramponi R,Mataloni P,Osellame R,Galvao E F,Sciarrino F 2014 Nat.Photon.8 615
    [7]Wang H,He Y,Li Y H,Su Z E,Li B,Huang H L,Ding X,Chen M C,Liu C,Qin J,Li J P,He Y M,Schneider C,Kamp M,Peng C Z,Hofling S,Lu C Y,Pan J W 2017 Nat.Photon.11 361
    [8]Plenio M 2009 Contemp.Phys.50 337
    [9]Lloyd S 1995 Phys.Rev.Lett.75 346
    [10]Monroe C,Meekhof D M,King B E,Itano W M,Wineland DJ 1995 Phys.Rev.Lett.75 4714
    [11]Clarke J,Wilhelm F K 2008 Nature 453 1031
    [12]Gershenfeld N A,Chuang I L 1997 Science 275 350
    [13]Kong X Y,Zhu Y Y,Wen J W,Xin T,Li K R,Long G L2018 Acta Phys.Sin.67 220301(in Chinese)[孔祥宇,朱垣晔,闻经纬,辛涛,李可仁,龙桂鲁2018物理学报67 220301]
    [14]Loss D,DiVincenzo D P 1998 Phys.Rev.A 57 120
    [15]Tewari S,Das Sarma S,Nayak C,Zhang C W,Zoller P 2007Phys.Rev.Lett.98 010506
    [16]Yoran N,Reznik B 2003 Phys.Rev.Lett.91 037903
    [17]Laing A,Peruzzo A,Politi A,Verde M R,Halder M,Ralph TC,Thompson M G,O'Brien J L 2010 Appl.Phys.Lett.97211109
    [18]Knill E,Laflamme R,Milburn G J 2001 Nature 409 46
    [19]Kok P,Munro W J,Nemoto K,Ralph T C,Dowling J P,Milburn G J 2007 Rev.Mod.Phys.79 135
    [20]Zhang Q Y,Xu P,Zhu S N 2018 Chin.Phys.B 27 054207
    [21]Feng L T,Zhang M,Zhou Z Y,Li M,Xiong X,Yu L,Shi BS,Guo G P,Dai D X,Ren X F,Guo G C 2016 Nat.Commun.7 11985
    [22]Marcikic I,de Riedmatten H,Tittel W,Zbinden H,Legre M,Gisin N 2004 Phys.Rev.Lett.93 180502
    [23]Politi A,Cryan M J,Rarity J G,Yu S Y,O'Brien J L 2008Science 320 646
    [24]Marshall G D,Politi A,Matthews J C F,Dekker P,Ams M,Withford M J,O'Brien J L 2009 Opt.Express 17 12546
    [25]Davis K M,Miura K,Sugimoto N,Hirao K 1996 Opt.Lett.21 1729
    [26]Mattle K,Weinfurter H,Kwiat P G,Zeilinger A 1996 Phys.Rev.Lett.76 4656
    [27]Sansoni L,Sciarrino F,Vallone G,Mataloni P,Crespi A,Ramponi R,Osellame R 2010 Phys.Rev.Lett.105 200503
    [28]Sansoni L,Sciarrino F,Vallone G,Mataloni P,Crespi A,Ramponi R,Osellame R 2012 Phys.Rev.Lett.108 010502
    [29]Crespi A,Ramponi R,Osellame R,Sansoni L,Bongioanni I,Sciarrino F,Vallone G,Mataloni P 2011 Nat.Commun.2 566
    [30]Homoelle D,Wielandy S,Gaeta A L,Borrelli N F,Smith C1999 Opt.Lett.24 1311
    [31]Gattass R R,Mazur E 2008 Nat.Photon.2 219
    [32]Della Valle G,Osellame R,Laporta P 2009 J.Opt.A:Pure Appl.Opt.11 049801
    [33]Osellame R,Taccheo S,Marangoni M,Ramponi R,Laporta P,Polli D,de Silvestri S,Cerullo G 2003 J.Opt.Soc.Am.B:Opt.Phys.20 1559
    [34]Eaton S M,Chen W,Zhang L,Zhang H,Iyer R,Aitchison JS,Herman P R 2006 IEEE Photon.Tech.L 18 2174
    [35]Osellame R,Hoekstra H J W M,Cerullo G,Pollnau M 2011Laser Photon.Rev.5 442
    [36]Itoh K,Watanabe W,Nolte S,Schaffer C B 2006 MRS Bull.31 620
    [37]Wei W H,Li M T,Liu M N 2018 Acta Phys.Sin.67 064203(in Chinese)[魏伟华,李木天,刘墨南2018物理学报67064203]
    [38]Boada O,Novo L,Sciarrino F,Omar Y 2017 Phys.Rev.A 95013830
    [39]Tang H,Lin X F,Feng Z,Chen J Y,Gao J,Sun K,Wang CY,Lai P C,Xu X Y,Wang Y,Qiao L F,Yang A L,Jin X M2018 Sci.Adv.4 eaat3174
    [40]Crespi A,Osellame R,Ramponi R,Giovannetti V,Fazio R,Sansoni L,de Nicola F,Sciarrino F,Mataloni P 2013 Nat.Photon.7 322
    [41]Spagnolo N,Vitelli C,Aparo L,Mataloni P,Sciarrino F,Crespi A,Ramponi R,Osellame R 2013 Nat.Commun.41606
    [42]Tillmann M,Dakic B,Heilmann R,Nolte S,Szameit A,Walther P 2013 Nat.Photon.7 540
    [43]Houck A A,Tureci H E,Koch J 2012 Nat.Phys.8 292
    [44]Pitsios I,Banchi L,Rab A S,Bentivegna M,Caprara D,Crespi A,Spagnolo N,Bose S,Mataloni P,Osellame R,Sciarrino F 2017 Nat.Commun.8 1569
    [45]Hong C K,Ou Z Y,Mandel L 1987 Phys.Rev.Lett.59 2044
    [46]Meany T,Delanty M,Gross S,Marshall G D,Steel M J,Withford M J 2012 Opt.Express 20 26895
    [47]Chaboyer Z,Meany T,Helt L G,Withford M J,Steel M J2015 Sci.Rep.5 9601
    [48]Corrielli G,Atzeni S,Piacentini S,Pitsios I,Crespi A,Osellame R 2018 Opt.Express 26 15101
    [49]Pitsios I,Samara F,Corrielli G,Crespi A,Osellame R 2017Sci.Rep.7 11342
    [50]Fernandes L A,Grenier J R,Herman P R,Aitchison J S,Marques P V S 2012 Opt.Express 20 24103
    [51]Arriola A,Gross S,Jovanovic N,Charles N,Tuthill P G,Olaizola S M,Fuerbach A,Withford M J 2013 Opt.Express21 2978
    [52]Chen G Y,Piantedosi F,Otten D,Kang Y Q,Zhang W Q,Zhou X H,Monro T M,Lancaster D G 2018 Sci.Rep.810377
    [53]Zhang R C,Wang J M,Zhao G,LüJ Y 2013 Opt.Express 2118434
    [54]Nasu Y,Kohtoku M,Hibino Y 2005 Opt.Lett.30 723
    [55]Cheng Y,Sugioka K,Midorikawa K,Masuda M,Toyoda K,Kawachi M,Shihoyama K 2003 Opt.Lett.28 55
    [56]Dekker P,Ams M,Marshall G D,Little D J,Withford M J 2010 Opt.Express 18 3274
    [57]Liu Z M,Liao Y,Wang Z H,Zhang Z H,Liu Z X,Qiao L L,Cheng Y 2018 Materials 11 1926
    [58]Heilmann R,Grafe M,Nolte S,Szameit A 2014 Sci.Rep.44118
    [59]Bhardwaj V R,Corkum P B,Rayner D M,Hnatovsky C,Simova E,Taylor R S 2004 Opt.Lett.29 1312
    [60]Corrielli G,Crespi A,Geremia R,Ramponi R,Sansoni L,Santinelli A,Mataloni P,Sciarrino F,Osellame R 2014 Nat.Commun.5 4249
    [61]Politi A,Matthews J C F,O'Brien J L 2009 Science 325 1221
    [62]Ralph T C,Langford N K,Bell T B,White A G 2002 Phys.Rev.A 65 062324
    [63]Hofmann H F,Takeuchi S 2002 Phys.Rev.A 66 024308
    [64]O'Brien J L,Pryde G J,White A G,Ralph T C,Branning D2003 Nature 426 264
    [65]Yariv A 1973 IEEE J.Quantum Electron.9 919
    [66]Pittman T B,Jacobs B C,Franson J D 2001 Phys.Rev.A 64062311
    [67]Zeuner J,Sharma A N,Tillmann M,Heilmann R,Grafe M,Moqanaki A,Szameit A,Walther P 2018 Npj Quantum Inf.413
    [68]Knill E 2002 Phys.Rev.A 66 052306
    [69]Meany T,Biggerstaff D N,Broome M A,Fedrizzi A,Delanty M,Steel M J,Gilchrist A,Marshall G D,White A G,Withford M J 2016 Sci.Rep.6 25126
    [70]Zhang Q,Li M,Chen Y,Ren X,Osellame R,Gong Q,Li Y2019 Opt.Mater.Express 9 2318
    [71]Toffoli T 1980 Proceedings of the 7th Colloquium on Automata,Languages and Programming Berlin,Heidelberg,July 14-18,1980 p632
    [72]Cory D G,Price M D,Maas W,Knill E,Laflamme R,Zurek W H,Havel T F,Somaroo S S 1998 Phys.Rev.Lett.81 2152
    [73]Shor P W 1997 SIAM J.Comput.26 1484
    [74]Monz T,Kim K,Hansel W,Riebe M,Villar A S,Schindler P,Chwalla M,Hennrich M,Blatt R 2009 Phys.Rev.Lett.102040501
    [75]Fedorov A,Steffen L,Baur M,da Silva M P,Wallraff A 2012Nature 481 170
    [76]Barenco A,Bennett C H,Cleve R,DiVincenzo D P,Margolus N,Shor P,Sleator T,Smolin J A,Weinfurter H 1995 Phys.Rev.A 52 3457
    [77]Adamatzky A 2002 Collision-Based Computing(London:Springer-Verlag)p120
    [78]Nielsen M E,Nielsen M A,Chuang I L 2000 Quantum Computation and Quantum Information(Cambridge:Cambridge University Press)p182
    [79]Ralph T C,Resch K J,Gilchrist A 2007 Phys.Rev.A 75022313
    [80]Lanyon B P,Barbieri M,Almeida M P,Jennewein T,Ralph T C,Resch K J,Pryde G J,O'Brien J L,Gilchrist A,White A G 2009 Nat.Phys.5 134
    [81]Patel R B,Ho J,Ferreyrol F,Ralph T C,Pryde G J 2016Sci.Adv.2 e1501531
    [82]Ivanov S S,Ivanov P A,Vitanov N V 2015 Phys.Rev.A 91032311
    [83]Zhu C H,Cao X,Quan D X,Pei C X 2014 Chin.Phys.B 23084207
    [84]Wang H F,Zhang S,Zhu A D 2012 Chin.Phys.B 21 040306
    [85]Buhrman H,Cleve R,Watrous J,de Wolf R 2001 Phys.Rev.Lett.87 167902
    [86]Hofmann H F 2012 Phys.Rev.Lett.109 020408
    [87]Cernoch A,Soubusta J,Bartuskova L,Dusek M,Fiurasek J2008 Phys.Rev.Lett.100 180501
    [88]Fiurasek J 2008 Phys.Rev.A 78 032317
    [89]Ono T,Okamoto R,Tanida M,Hofmann H F,Takeuchi S2017 Sci.Rep.7 45353