免疫检查点分子与天然免疫稳态调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Roles of immune checkpoints in maintaining innate immune homeostasis
  • 作者:李葛 ; 韩根成
  • 英文作者:LI Ge;HAN Gen-Cheng;Academic of Military Medical Sciences;
  • 关键词:免疫检查点 ; 天然免疫 ; Tim-3
  • 英文关键词:Immune checkpoints;;Innate immunity;;Tim-3
  • 中文刊名:ZMXZ
  • 英文刊名:Chinese Journal of Immunology
  • 机构:军事医学研究院;
  • 出版日期:2019-02-27
  • 出版单位:中国免疫学杂志
  • 年:2019
  • 期:v.35
  • 基金:国家973课题“2013CB530506”;; 国家自然科学基金课题(81771684);; 北京市自然科学基金重点项目(7141007)资助
  • 语种:中文;
  • 页:ZMXZ201904001
  • 页数:8
  • CN:04
  • ISSN:22-1126/R
  • 分类号:7-14
摘要
近年来以免疫检查点分子PD-1、CTLA-4为靶点的免疫干预策略为相关疾病的诊治带来了新的希望。目前Tim-3、LAG-3及TIGIT等免疫相关分子被认为是最具潜力的新一代免疫治疗靶点,其相关药物研究也已经进入Ⅱ期或Ⅲ期临床研究阶段。大多数的研究重点关注免疫检查点分子对T细胞耐受的影响,而近来的研究表明Tim-3、PD-1等免疫检查点分子在天然免疫稳态调控中也发挥至关重要的作用。天然免疫细胞通过调控微环境影响或决定特异性免疫应答的方向及结局,靶向天然免疫细胞的干预策略越来越受到人们的重视。针对免疫检查点分子的干预策略如何或在多大程度上影响天然免疫细胞稳态是非常值得探讨的课题。本综述主要阐述Tim-3等免疫检查点分子调控天然免疫稳态的机制及意义,一方面旨在更全面地了解该类免疫检查点分子的作用机制,另一方面也为拓展该类靶点的临床应用提供新依据。
        The immune intervention strategy targeting the immune checkpoints such as PD-1 and CTLA-4 has brought new hopes for the treatment of immune disorders. Recently,immune checkpoint inhibitors including Tim-3,LAG-3 and TIGIT are considered as new generation of potential therapeutic targets,and antagonists against these checkpoints are now in phase Ⅰ or phase Ⅱ clinical trials. Most studies focus on the effects of immune checkpoint molecules on T cell tolerance. However,more and more reports have shown that immune checkpoint inhibitors such as PD-1,Tim-3 also play crucial roles in maintaining innate immune homeostasis. Innate immune cells play critical roles in manipulating the local microenvironment and in determining the outcome of adaptive immunity. Strategies targeting innate immune cells have attracted considerable attention in the fields of immunotherapy. How and to what extent,immune check point interventions modulate innate immune responses are largely unknown. This review focuses on the mechanisms and the possible implications of Tim-3 and other immune checkpoints regulated innate immune responses,aiming to fully understand the regulatory roles of immune checkpoints and to provide new lights on immunotherapy strategies.
引文
[1]Kasagi S,Kawano S,Kumagai S.PD-1 and autoimmunity[J].Crit Rev Immunol,2011,31(4):265-295.
    [2]Callahan MK,Postow MA,Wolchok JD.Targeting T cell co-receptors for cancer therapy[J].Immunity,2016,44(5):1069-1078.
    [3]Attanasio J,Wherry EJ.Costimulatory and coinhibitory receptor pathways in infectious disease[J].Immunity,2016,44(5):1052-1068.
    [4]Cameron F,Whiteside G,Perry C.Ipilimumab:first global approval[J].Drugs,2011,71(8):1093-1104.
    [5]Poole RM.Pembrolizumab:first global approval[J].Drugs,2014,74(16):1973-1981.
    [6]Topalian SL,Hodi FS,Brahmer JR,et al.Safety,activity,and immune correlates of anti-PD-1 antibody in cancer[J].N Engl JMed,2012,366(26):2443-2454.
    [7]Markham A.Atezolizumab:first global approval[J].Drugs,2016,76(12):1227-1232.
    [8]Kim ES.Avelumab:First global approval[J].Drugs,2017,77(8):929-937.
    [9]Syed YY.Durvalumab:first global approval[J].Drugs,2017,77(12):1369-1376.
    [10]Markham A,Duggan S.Cemiplimab:First global approval[J].Drugs,2018,78(17):1841-1846.
    [11]Kim JS,Shin DC,Woo MY,et al.T cell immunoglobulin mucin domain(TIM)-3 promoter activity in a human mast cell line[J].Immune Netw,2012,12(5):207-212.
    [12]Monney L,Sabatos CA,Gaglia JL,et al.Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J].Nature,2002,415(6871):536-541.
    [13]Chiba S,Baghdadi M,Akiba H,et al.Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J].Nat Immunol,2012,13(9):832-842.
    [14]Ndhlovu LC,Lopez-Verges S,Barbour JD,et al.Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J].Blood,2012,119(16):3734-3743.
    [15]Liu Y,Shu Q,Gao L,et al.Increased Tim-3 expression on peripheral lymphocytes from patients with rheumatoid arthritis negatively correlates with disease activity[J].Clin Immunol,2010,137(2):288-295.
    [16]Wu FH,Yuan Y,Li D,et al.Endothelial cell-expressed Tim-3 facilitates metastasis of melanoma cells by activating the NF-kappaBpathway[J].Oncol Rep,2010,24(3):693-699.
    [17]Jing W,Gershan JA,Blitzer GC,et al.Adoptive cell therapy using PD-1(+)myeloma-reactive T cells eliminates established myeloma in mice[J].J Immunother Cancer,2017,5:51.
    [18]Agata Y,Kawasaki A,Nishimura H,et al.Expression of the PD-1antigen on the surface of stimulated mouse T and B lymphocytes[J].Int Immunol,1996,8(5):765-772.
    [19]Zhang Y,Ma CJ,Ni L,et al.Cross-talk between programmed death-1 and suppressor of cytokine signaling-1 in inhibition of IL-12 production by monocytes/macrophages in hepatitis C virus infection[J].J Immunol,2011,186(5):3093-3103.
    [20]Oyer JL,Gitto SB,Altomare DA,et al.PD-L1 blockade enhances anti-tumor efficacy of NK cells[J].Oncoimmunology,2018,7(11):e1509819.
    [21]Versteven M,Van Den Bergh JMJ,Marcq E,et al.Dendritic cells and programmed death-1 blockade:a joint venture to combat cancer[J].Front Immunol,2018,9:394.
    [22]Asimakopoulos F.TIGIT checkpoint inhibition for myeloma[J].Blood,2018,132(16):1629-1630.
    [23]Goldberg MV,Drake CG.LAG-3 in Cancer Immunotherapy[J].Curr Top Microbiol Immunol,2011,344:269-278.
    [24]Martinet L,Smyth MJ.Balancing natural killer cell activation through paired receptors[J].Nat Rev Immunol,2015,15(4):243-254.
    [25]Workman CJ,Wang Y,El Kasmi KC,et al.LAG-3 regulates plasmacytoid dendritic cell homeostasis[J].J Immunol,2009,182(4):1885-1891.
    [26]Lu X,Liu J,Cui P,et al.Co-inhibition of TIGIT,PD1,and Tim3reverses dysfunction of Wilms tumor protein-1(WT1)-specific CD8+T lymphocytes after dendritic cell vaccination in gastric cancer[J].Am J Cancer Res,2018,8(8):1564-1575.
    [27]Hastings WD,Anderson DE,Kassam N,et al.TIM-3 is expressed on activated human CD4+T cells and regulates Th1 and Th17 cytokines[J].Eur J Immunol,2009,39(9):2492-2501.
    [28]Meder L,Schuldt P,Thelen M,et al.Combined VEGF and PD-L1blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer[J].Cancer Res,2018,78(15):4270-4281.
    [29]Cao Y,Zhou X,Huang X,et al.Tim-3 expression in cervical cancer promotes tumor metastasis[J].PLo S One,2013,8(1):e53834.
    [30]Xu Y,Zhang H,Huang Y,et al.Role of TIM-3 in ovarian cancer[J].Clin Transl Oncol,2017,19(9):1079-1083.
    [31]Fang L,Lowther DE,Meizlish ML,et al.The immune cell infiltrate populating meningiomas is composed of mature,antigen-experienced T and B cells[J].Neuro Oncol,2013,15(11):1479-1490.
    [32]Da Silva IP,Gallois A,Jimenez-Baranda S,et al.Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade[J].Cancer Immunol Res,2014,2(5):410-422.
    [33]Romero D.Immunotherapy:PD-1 says goodbye,TIM-3 says hello[J].Nat Rev Clin Oncol,2016,13(4):202-203.
    [34]Yang X,Jiang X,Chen G,et al.T cell Ig mucin-3 promotes homeostasis of sepsis by negatively regulating the TLR response[J].JImmunol,2013,190(5):2068-2079.
    [35]Li X,Chen G,Li Y,et al.Involvement of T cell Ig Mucin-3(Tim-3)in the negative regulation of inflammatory bowel disease[J].Clin Immunol,2010,134(2):169-177.
    [36]Jiang X,Zhou T,Xiao Y,et al.Tim-3 promotes tumor-promoting M2 macrophage polarization by binding to STAT1 and suppressing the STAT1-miR-155 signaling axis[J].Oncoimmunology,2016,5(9):e1211219.
    [37]Yan W,Liu X,Ma H,et al.Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages[J].Gut,2015,64(10):1593-1604.
    [38]Zhang Y,Ma CJ,Wang JM,et al.Tim-3 regulates pro-and anti-inflammatory cytokine expression in human CD14+monocytes[J].JLeukoc Biol,2012,91(2):189-196.
    [39]Frisancho-Kiss S,Coronado MJ,Frisancho JA,et al.Gonadectomy of male BALB/c mice increases Tim-3(+)alternatively activated M2 macrophages,Tim-3(+)T cells,Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis[J].Brain Behav Immun,2009,23(5):649-657.
    [40]Wang Z,Sun D,Chen G,et al.Tim-3 inhibits macrophage control of Listeria monocytogenes by inhibiting Nrf2[J].Sci Rep,2017,7:42095.
    [41]Li X,Wang B,Gu L,et al.Tim-3 expression predicts the abnormal innate immune status and poor prognosis of glioma patients[J].Clin Chim Acta,2018,476:178-184.
    [42]Anderson AC.Tim-3:an emerging target in the cancer immunotherapy landscape[J].Cancer Immunol Res,2014,2(5):393-398.
    [43]Kanzaki M,Wada J,Sugiyama K,et al.Galectin-9 and T cell immunoglobulin mucin-3 pathway is a therapeutic target for type 1diabetes[J].Endocrinology,2012,153(2):612-620.
    [44]Huang S,Lu F,Li J,et al.Quantification of tryptase-TIM-3 double-positive mast cells in human chronic periodontitis[J].Arch O-ral Biol,2014,59(6):654-661.
    [45]Li Z,Ju Z,Frieri M.The T-cell immunoglobulin and mucin domain(Tim)gene family in asthma,allergy,and autoimmunity[J].Allergy Asthma Proc,2013,34(1):e21-e26.
    [46]Kearley J,Mcmillan SJ,Lloyd CM.Th2-driven,allergen-induced airway inflammation is reduced after treatment with anti-Tim-3antibody in vivo[J].J Exp Med,2007,204(6):1289-1294.
    [47]Nakae S,Iikura M,Suto H,et al.TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells[J].Blood,2007,110(7):2565-2568.
    [48]Gleason MK,Lenvik TR,Mccullar V,et al.Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9[J].Blood,2012,119(13):3064-3072.
    [49]Ju Y,Hou N,Meng J,et al.T cell immunoglobulin-and mucin-domain-containing molecule-3(Tim-3)mediates natural killer cell suppression in chronic hepatitis B[J].J Hepatol,2010,52(3):322-329.
    [50]Wang Z,Zhu J,Gu H,et al.The clinical significance of abnormal Tim-3 expression on NK cells from patients with gastric cancer[J].Immunol Invest,2015,44(6):578-589.
    [51]Xu L,Huang Y,Tan L,et al.Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma[J].Int Immunopharmacol,2015,29(2):635-641.
    [52]Finney CA,Ayi K,Wasmuth JD,et al.HIV infection deregulates Tim-3 expression on innate cells:combination antiretroviral therapy results in partial restoration[J].J Acquir Immune Defic Syndr,2013,63(2):161-167.
    [53]Huang X,Bai X,Cao Y,et al.Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion[J].J Exp Med,2010,207(3):505-520.
    [54]Miko E,Szereday L,Barakonyi A,et al.Immunoactivation in preeclampsia:Vdelta2+and regulatory T cells during the inflammatory stage of disease[J].J Reprod Immunol,2009,80(1-2):100-108.
    [55]Ishida Y,Agata Y,Shibahara K,et al.Induced expression of PD-1,a novel member of the immunoglobulin gene superfamily,upon programmed cell death[J].EMBO J,1992,11(11):3887-3895.
    [56]Chen J,Jiang CC,Jin L,et al.Regulation of PD-L1:a novel role of pro-survival signalling in cancer[J].Ann Oncol,2016,27(3):409-416.
    [57]Chamoto K,Al-Habsi M,Honjo T.Role of PD-1 in Immunity and Diseases[J].Curr Top Microbiol Immunol,2017,410:75-97.
    [58]Janikashvili N,Bonnotte B,Katsanis E,et al.The dendritic cellregulatory T lymphocyte crosstalk contributes to tumor-induced tolerance[J].Clin Dev Immunol,2011,2011:430394.
    [59]Della Chiesa M,Pesce S,Muccio L,et al.Features of memory-like and PD-1(+)human NK cell subsets[J].Front Immunol,2016,7:351.
    [60]Pesce S,Greppi M,Tabellini G,et al.Identification of a subset of human natural killer cells expressing high levels of programmed death 1:A phenotypic and functional characterization[J].J Allergy Clin Immunol,2017,139(1):335-346 e3.
    [61]Tabellini G,Benassi M,Marcenaro E,et al.Primitive neuroectodermal tumor in an ovarian cystic teratoma:natural killer and neuroblastoma cell analysis[J].Case Rep Oncol,2014,7(1):70-78.
    [62]Benson DM Jr,Bakan CE,Mishra A,et al.The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect:a therapeutic target for CT-011,a novel monoclonal anti-PD-1 antibody[J].Blood,2010,116(13):2286-2294.
    [63]Ray A,Das DS,Song Y,et al.Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with Tcells,natural killer cells and multiple myeloma cells[J].Leukemia,2015,29(6):1441-1444.
    [64]Iraolagoitia XL,Spallanzani RG,Torres NI,et al.NK cells restrain spontaneous antitumor CD8+T cell priming through PD-1/PD-L1interactions with dendritic cells[J].J Immunol,2016,197(3):953-961.
    [65]Concha-Benavente F,Kansy B,Moskovitz J,et al.PD-L1 mediates dysfunction in activated PD-1(+)NK cells in head and neck cancer patients[J].Cancer Immunol Res,2018,6(12):1548-1560.
    [66]Muntasell A,Ochoa MC,Cordeiro L,et al.Targeting NK-cell checkpoints for cancer immunotherapy[J].Curr Opin Immunol,2017,45:73-81.
    [67]Kim N,Kim HS.Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells[J].Front Immunol,2018,9:2041.
    [68]Wang JF,Li JB,Zhao YJ,et al.Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression:an animal study and a prospective case-control study[J].Anesthesiology,2015,122(4):852-863.
    [69]Kamata T,Suzuki A,Mise N,et al.Blockade of programmed death-1/programmed death ligand pathway enhances the antitumor immunity of human invariant natural killer T cells[J].Cancer Immunol Immunother,2016,65(12):1477-1489.
    [70]Favreau M,Venken K,Faict S,et al.Both mucosal-associated invariant and natural killer T-cell deficiency in multiple myeloma can be countered by PD-1 inhibition[J].Haematologica,2017,102(7):e266-e270.
    [71]Ribeiro ST,Ribot JC,Silva-Santos B.Five layers of receptor signaling in gammadelta T-Cell Differentiation and Activation[J].Front Immunol,2015,6:15.
    [72]Iwasaki M,Tanaka Y,Kobayashi H,et al.Expression and function of PD-1 in human gammadelta T cells that recognize phosphoantigens[J].Eur J Immunol,2011,41(2):345-355.
    [73]Stanietsky N,Mandelboim O.Paired NK cell receptors controlling NK cytotoxicity[J].Febs Lett,2010,584(24):4895-4900.
    [74]Stanietsky N,Simic H,Arapovic J,et al.The interaction of TIGITwith PVR and PVRL2 inhibits human NK cell cytotoxicity[J].Proc Natl Acad Sci U S A,2009,106(42):17858-17863.
    [75]Zhang Q,Bi J,Zheng X,et al.Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent antitumor immunity[J].Nat Immunol,2018,19(7):723-732.
    [76]Zhang QF,Yin WW,Xia Y,et al.Liver-infiltrating CD11b(-)CD27(-)NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression[J].Cell Mol Immunol,2017,14(10):819-829.
    [77]Yu X,Harden K,Gonzalez LC,et al.The surface protein TIGITsuppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J].Nat Immunol,2009,10(1):48-57.
    [78]Miyazaki T,Dierich A,Benoist C,et al.Independent modes of natural killing distinguished in mice lacking Lag3[J].Science,1996,272(5260):405-408.
    [79]Huard B,Tournier M,Triebel F.LAG-3 does not define a specific mode of natural killing in human[J].Immunol Lett,1998,61(2-3):109-112.
    [80]Salomon B,Bluestone JA.Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation[J].Annu Rev Immunol,2001,19:225-252.
    [81]Stojanovic A,Fiegler N,Brunner-Weinzierl M,et al.CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-gamma production in response to mature dendritic cells[J].J Immunol,2014,192(9):4184-4191.
    [82]Hannani D,Vetizou M,Enot D,et al.Anticancer immunotherapy by CTLA-4 blockade:obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25[J].Cell Res,2015,25(2):208-224.
    [83]Simpson TR,Li F,Montalvo-Ortiz W,et al.Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma[J].J Exp Med,2013,210(9):1695-1710.
    [84]Jie HB,Schuler PJ,Lee SC,et al.CTLA-4(+)regulatory T cells increased in cetuximab-treated head and neck cancer patients suppress nk cell cytotoxicity and correlate with poor prognosis[J].Cancer Res,2015,75(11):2200-2210.