小麦TaWIN1基因的克隆和表达分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and Expression Analysis of TaWIN1 Gene in Wheat (Triticum aestivum)
  • 作者:申玉霞 ; 郭利建 ; 马猛 ; 赵惠贤 ; 刘香利
  • 英文作者:SHEN Yuxia;GUO Lijian;MA Meng;ZHAO Huixian;LIU Xiangli;College of Life Science,Northwest A&F University;State Key Laboratory of Crop Stress Biology for Arid Areas,Northwest A&F University;
  • 关键词:小麦 ; TaWIN1基因 ; 基因克隆 ; 表达分析
  • 英文关键词:Wheat;;TaWIN1 gene;;Gene Cloning;;qRT-PCR
  • 中文刊名:MLZW
  • 英文刊名:Journal of Triticeae Crops
  • 机构:西北农林科技大学生命科学学院;旱区作物逆境分子生物学国家重点实验室;
  • 出版日期:2019-01-23 10:45
  • 出版单位:麦类作物学报
  • 年:2019
  • 期:v.39;No.256
  • 基金:杨凌示范区产学研用协同创新重大项目(2017CXY-01);; 国家自然科学基金项目(31471482)
  • 语种:中文;
  • 页:MLZW201902002
  • 页数:6
  • CN:02
  • ISSN:61-1359/S
  • 分类号:5-10
摘要
14-3-3蛋白家族在植物生长发育和逆境胁迫响应中发挥着重要作用。 TaWIN1基因是小麦14-3-3基因家族成员之一,为了进一步了解该基因的功能,本研究以普通小麦中国春为材料克隆了 TaWIN1基因并进行了生物信息学分析和表达分析。结果表明, TaWIN1基因含有801 bp的开放阅读框,编码266个氨基酸,含有完整的14-3-3蛋白家族结构域;该基因的编码蛋白为酸性蛋白,不具有跨膜区,可能定位于细胞质;进化分析显示,小麦TaWIN1蛋白与大麦14-3-3E、二穗短柄草GF14-D的亲缘关系最近; TaWIN1基因在小麦不同发育时期和不同组织中均有表达,但在10 mm幼穗中的相对表达量最高,其次为苗期叶片和旗叶,在根中表达量最低;根中 TaWIN1基因在干旱、高温、低温和盐胁迫下均显著上调表达;叶片中 TaWIN1基因在干旱、低温和盐胁迫下均显著上调表达,而在高温下则显著下调表达。
        The 14-3-3 protein family plays an important role in plant growth and stress response. TaWIN1 gene is a member of the wheat 14-3-3 gene family.In order to further study the function of TaWIN1 gene,it was cloned from wheat Chinese Spring and analyzed by bioinformatics and expression patterns. The results showed this gene contains an open reading frame of 801 bp,which encodes 266 amino acids and contains the structure of the 14-3-3 protein family domain. The encoded protein of this gene is an acidic protein,and do not have transmembrane region,and may be localized to the cytoplasm. It was found that the protein sequence of TaWIN1 was highly homologous with 14-3-3 E(Hordeum vulgare) and GF14-D(Brachypodium distachyon)in analysis of phylogenetic tree. TaWIN1 gene was expressed in all tissues and stages tested in wheat. The expression level was highest in 10 mm young spikelet,followed by that in the leaf and flag leaf,and the lowest level was in the root. The expression of TaWIN1 gene was up-regulated significantly in roots under drought,high temperature,low temperature,and salt stress. While in leaves it was up-regulated significantly under drought,low temperature and salt stress,but down-regulated significantly under high temperature.
引文
[1]MOOR B W,PEREZ V J.Specific acidic proteins of the nervous system[M].Physiological and Biochemical Aspects of Nervous Integration.Prentice Hall:Englewood Cliff,N J.1967:343.
    [2]崔娜,于志海,韩明利,等.14-3-3蛋白研究进展 [J].西北植物学报,2012,32(4):843. CUI N ,YU Z H,HAN M L,et al.Research advancement of 14-3-3 proteins in plants [J].Acta Agriculture Boreali-Occidentalis Sinica,2012,32(4):843.
    [3]SEHNKE P C,FERL R J.Exposed loop domains of complexed 14-3-3 proteins contribute to structural diversity and functional specificity [J].Plant Physiology,2006,140(2):647.
    [4]CHUNG H J,SEHNKE P C,FERL R J.The 14-3-3 proteins:cellular regulators of plant metabolism [J].Trends of Plant Science,1999,4(9):367.
    [5]LIU Q,ZHANG S,LIU B.14-3-3 proteins:Macro-regulators with great potential for improving abiotic stress tolerance in plants [J].Biochemical and Biophysical Research Communications,2016,477(1):9.
    [6]CHEN F,Li Q,SUN L,et al.The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress [J].DNA Research,2006,13(2):53.
    [7]LANCIEN M,ROBERTS M R.Regulation of Arabidopsis thaliana 14-3-3 gene expression by gamma-aminobutyric acid [J].Plant Cell and Environment,2006,29(7):1430.
    [8]YAN J Q,HE C,WANG J,MAO Z,et al.Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions [J].Plant and Cell Physiology,2004,45(8):1007.
    [9]CAO H,XU Y,YUAN L,et al.Molecular characterization of the 14-3-3 gene family in Brachypodium distachyon L.reveals high evolutionary conservation and diverse responses to abiotic stresses [J].Frontiers in Plant Science,2016,7(769):1.
    [10]YANG L,YOU J,WANG Y,et al.Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon [J].Plant Physiology and Biochemistry,2017,117:1.
    [11]HE Y,ZHANG Y,CHEN L,et al.A member of the 14-3-3 gene family in Brachypodium distachyon BdGF14d confers salt tolerance in transgenic tobacco plants [J].Frontiersin Plant Science,2017,8(1099):340.
    [12]LIU H,SULTAN M,LIU X L,et al.Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum) [J].PLoS One,2015,10(4):e0121852.
    [13]YANG X,WEN H L,SOBOTT F,et al.Structural basis for protein-protein interactions in the 14-3-3 protein family [J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(46):17237.
    [14]SCHOONHEIM P J,SINNIGE M P,CASARETTO J A,et al.14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination [J].Plant Journal,2007,49(2):289.
    [15]YOSHIHISA I,NOZOMU K,TOMONOBU K,et al.Specific binding of a 14-3-3 protein to autophosphorylated WPK4,an SNF1-related wheat protein kinase,and to WPK4-phosphorylated nitrate reductase [J].Journal of Biological Chemistry,2000,275(41):31695.