基于改进型泊松-玻尔兹曼方程的电渗流建模与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and Modeling of Electro-osmosis Based on the Modified Poisson-Boltzmann Equation
  • 作者:胡晟 ; 吕江涛 ; 司光远
  • 英文作者:HU Sheng;LYU Jiang-tao;SI Guang-yuan;School of Control Engineering, Northeastern University at Qinhuangdao;
  • 关键词:交流电渗流 ; 双电层 ; PB方程 ; MPB方程 ; 有限元法
  • 英文关键词:AC electro-osmosis;;electric double layer(EDL);;PB equation;;MPB equation;;finite element method
  • 中文刊名:DBDX
  • 英文刊名:Journal of Northeastern University(Natural Science)
  • 机构:东北大学秦皇岛分校控制工程学院;
  • 出版日期:2019-03-15
  • 出版单位:东北大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.342
  • 基金:河北省自然科学基金资助项目(F2017501059);; 辽宁省博士启动基金资助项目(20170520325);; 中央高校基本科研业务费专项资金资助项目(N172304033)
  • 语种:中文;
  • 页:DBDX201903027
  • 页数:5
  • CN:03
  • ISSN:21-1344/T
  • 分类号:146-150
摘要
建立了双电层的离子分布模型,基于经典Poisson-Boltzmann(PB)方程和改进型MPB(modifiedPoisson Boltzmann)方程对不同浓度和激励电压的离子分布进行了理论研究.结果发现在电压高于0. 4 V,且自由离子浓度小于10-4mol/L时,双电层内部的扩散层厚度存在较大的误差.这直接导致了基于Debye长度模拟电渗流运动与实际观测不符,主要因为Debye-Hückel公式具有线性关系不适用于仿真高电压条件下的电渗流运动.因此借助非线性MPB方程求解扩散层厚度,更能精确得到正、负电极宽度为500μm,间距为25μm,在±1 V,500 Hz电信号产生的最大电渗流速度为1 034. 31μm/s.
        The ion distribution for different concentrations and applied voltage is studied by modeling the ion distribution in electric double layer( EDL) based on the Poisson-Boltzmann( PB)and modified Poisson-Boltzmann( MPB) equations. The results indicate that some errors exist in the thickness of diffusion in EDL if the applied voltage is more than 0. 4 V and the ion concentration is less than 10-4 mol/L. The simulated electro-osmotic flowby using Debye length is not in agreement with the practical observation result mainly because the Debye-Hückel equation is of linear relationship and not compatible with the calculating electro-osmotic flowunder higher voltage conditions. By use of the MPB equation with non-linear characteristics,the maximal electro-osmotic flowgenerated by two co-planar metal electrodes with the width of 500 μm and the gap of 25 μm is 1 034. 31 μm/s at ± 1 V potential with the frequency of 500 Hz.
引文
[1]Chen Y C,Li P,Huang P H,et al.Rare cell isolation and analysis in microfluidics[J].Lab on a Chip,2014,14(4):626-645.
    [2]徐章润,唐小燕,王建华,等.重力驱动小型滴汞泵的研究[J].东北大学学报(自然科学版),2008,29(3):449-452.(Xu Zhang-run,Tang Xiao-yan,Wang Jian-hua,et al.Development of a gravity-driven mercury-dropping pump[J].Journal of Northeastern University(Natural Science),2008,29(3):449-452.)
    [3]Dittrich P S,Manz A.Lab-on-a-chip:microfluidics in drug discovery[J].Nature Reviews Drug Discovery,2006,5(3):210-218.
    [4]Zou Z W,Jang A,Macknight E,et al.Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement[J].Sensors and Actuators B:Chemical,2008,134(1):18-24.
    [5]Kolluri N,Klapperich C M,Cabodi M.Towards lab-on-a-chip diagnostics for malaria elimination[J].Lab on a Chip,2018,18(1):75-94.
    [6]Zhao B S,Koo Y M,Chung D S.Separations based on the mechanical forces of light[J].Analytica Chimica Acta,2006,556(1):97-103.
    [7]Shields C W,Reyes C D,Lopez G P.Microfluidic cell sorting:a review of the advances in the separation of cells from debulking to rare cell isolation[J].Lab on a Chip,2015,15(5):1230-1249.
    [8]Pething R.Dielectrophoresis theory,methodology and biological applications[M].New York:Wiley,2017:1-448.
    [9]Hwang H,Park J K.Optoelectrofluidic platforms for chemistry and biology[J].Lab on a Chip,2011,11(1):33-47.
    [10]Green N G,Ramos A,Gonzalez A.Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes.III.observation of streamlines and numerical simulation[J].Physical Review E,2002,66(2):026305(1-11).
    [11]Pham P,Howorth M,Anne P C,et al.Numerical simulation of the electrical double layer based on the Poisson-Boltzmann models for AC electroosmosis flows[C]//Proceedings of the COMSOL Users Conference 2007.Grenoble:COMSOL,2007:1-10.