超声空化对颗粒破碎作用的影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the influence factors of ultrasonic cavitation on particle breakage
  • 作者:孙毅 ; 项京成 ; 梁曼 ; 黄韶炜 ; 毛亚郎
  • 英文作者:SUN Yi;XIANG Jingcheng;LIANG Man;HUANG Shaowei;MAO Yalang;College of Mechanical Engineering, Zhejiang University of Technology;
  • 关键词:超声空化 ; 颗粒破碎 ; 数值分析 ; 正交试验
  • 英文关键词:ultrasonic cavitation;;particle breakage;;numerical analysis;;orthogonal test
  • 中文刊名:ZJGD
  • 英文刊名:Journal of Zhejiang University of Technology
  • 机构:浙江工业大学机械工程学院;
  • 出版日期:2019-03-20
  • 出版单位:浙江工业大学学报
  • 年:2019
  • 期:v.47;No.198
  • 基金:国家自然科学基金资助项目(51675484)
  • 语种:中文;
  • 页:ZJGD201902006
  • 页数:6
  • CN:02
  • ISSN:33-1193/T
  • 分类号:32-36+43
摘要
为探究超声空化作用对颗粒破碎的影响效果,基于空化泡的动力学基本方程,利用空化过程Matlab数值方法分析了超声频率和液相黏度两个关键因素对超声空化作用强度的影响。在数值分析的基础上,通过超声空化破碎试验探究了超声频率和浆液浓度的影响效果。试验结果表明:经过一定时间的超声作用,颗粒群中位粒径D_(50)及10%体积累计粒径D_(10)大幅减小,超声空化颗粒破碎作用明显。超声频率和物料浆液浓度越低,空化作用越强,颗粒破碎效果越好;同时,介质的存在可以有效增强超声作用下空化微射流的壁面效应,增强颗粒的破碎效果,但过多的介质会影响超声波的传导,减弱空化作用。
        In order to investigate the effect of ultrasonic cavitation on particle breakage, a numerical analysis method was used to analyze the effect of ultrasonic frequency and liquid viscosity on ultrasonic cavitation intensity based on the kinetic basic equation of cavitation bubble. Based on the numerical analysis, the effect of ultrasonic frequency and liquid viscosity on cavitation was studied by ultrasonic cavitation crushing test. The experimental results show that D_(50) and D_(10) of the crushed particles are decreased significantly after a certain period of ultrasound cavitation. The lower the ultrasonic frequency and the slurry concentration are, the stronger the cavitation effect is, and the better the effect of the particle crushing is. Meanwhile, the existence of media can effectively enhance the wall effect of the cavitation micro-jet under the ultrasound, which improves the particle crushing efficiency. However, too many media will affect the conduction of ultrasound, reduce the role of cavitation.
引文
[1] 盖国胜,粉体工程[M].北京:清华大学出版社,2009.
    [2] 李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [3] 梁曼,孙毅,纪朋朋,等.正多边形角螺旋衬板对球磨机粉磨效率影响的数值分析[J].机械工程学报,2015,51(17):203-212.
    [4] SUSLICK K S,FLINT B.The temperature of cavitation[J].Science,1991(253):1397-1399.
    [5] HAMMITT F G.Cavitation and multiphase flow phenomena[M].New York:McGraw-Hill,1980.
    [6] GUPTA V K,SHARMA S.Analysis of ball mill grinding operation using mill power specific kinetic parameters[J].Advanced powder technology,2014,25(2):625-634.
    [7] 王效贵,罗冲,顾桢标.固壁面附近空化泡溃灭过程的数值模拟[J].浙江工业大学学报,2015,43(5):512-516,591.
    [8] BENJAMIN T B,ELLIS A T.The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries[J].Mathematical and physical sciences,1966(260):221-240.
    [9] 董志勇,夏国文,张珍,等.组合式水力空化反应器去除难降解污染物的试验研究[J].浙江工业大学学报,2014,42(2):178-181.
    [10] 董志勇,徐琳香,李大炜,等.圆孔多孔板水力空化降解对硝基苯酚废水的试验研究[J].浙江工业大学学报,2015,43(3):275-278.
    [11] 计时鸣,邱毅,蔡姚杰,等.软性磨粒流超声强化机理及试验研究[J].机械工程学报,2014,50(7):84-93.
    [12] 马继宇,康进武,黄天佑.功率超声处理破碎液体中TiN颗粒研究[J].实验技术与管理,2013,30(8):24-29.
    [13] 沈壮志,林书玉.声场中水力空化泡的动力学特性[J].物理学报,2011,60(8):1-10.
    [14] DMITRY G S,EKATERINA S,VALENTINA B,et al.Ultrasonic cavitation at solid surface[J].Advanced materials,2011,23(17):1922-1934.
    [15] PRIYANKA A P,HANIF A C,VIJAYANAND S M.Mechanisticand kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis[J].Chemical engineering journal,2012(187):248-260.
    [16] SERGEY K,KAZUHIRO O,YASUO I.Characterization of acoustic cavitation in water and molten aluminum alloy[J].Ultrasonics sonochemistry,2013,20(2):754-761.
    [17] BRENNEN C E.Cavitation and bubble dynamics[M].Cambridge:Cambridge University Press,2013.
    [18] SHI F N,NAPIER T J.Effects of slurry rheology on industrial grinding performance[J]. International journal of mineral processing,2002,65(3/4):125-140.
    [19] 王超,何雅玲,刘迎文,等.基于正交设计试验的电机散热的数值模拟研究[J].工程热物理学报,2011,3(1):89-92.