纳米α-Ni(OH)_2膜的合成及其超级电容性质研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and supercapacitor properties of α-Ni(OH)_2 nanofilms
  • 作者:陈建兵 ; 宋玉婷 ; 汪江节 ; 李准准
  • 英文作者:CHEN Jian-bing;SONG Yu-ting;WANG Jiang-jie;LI Zhun-zhun;College of Chemical and Materials Engineering,Chizhou University;
  • 关键词:α-Ni(OH)2 ; 合成 ; 循环伏安 ; 恒电流充放电 ; 超级电容
  • 英文关键词:α-Ni(OH)2 films;;synthesis;;cyclic voltammetry;;galvanostatic charge-discharge;;supercapacitor
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:池州学院化学与材料工程学院;
  • 出版日期:2015-12-24 13:57
  • 出版单位:应用化工
  • 年:2016
  • 期:v.45;No.288
  • 基金:省级化学与材料创新实践基地项目(2014sjjd029);; 国家级大学生创新创业训练计划项目(201511306038,AH201411306092)
  • 语种:中文;
  • 页:SXHG201602018
  • 页数:5
  • CN:02
  • ISSN:61-1370/TQ
  • 分类号:76-80
摘要
采用化学沉淀法在室温下合成了一种α-Ni(OH)_2纳米薄膜,探讨了合成温度及表面活性剂的影响。采用XRD、SEM、TEM和BET对材料进行表征。结果表明,合成温度及表面活性剂的种类对产物组成和形貌有较大影响,室温下,样品为厚度约2 nm的薄膜,带有较多的褶皱,比表面积206.8 m~2/g;50℃下合成的产物表面褶皱开始消失,且不均匀,有颗粒状物质生成,80℃下的产物褶皱状结构消失,主要为团聚在一起的颗粒组成。同时,将α-Ni(OH)_2纳米膜制成单电极,循环伏安和恒电流充放电测试表明,α-Ni(OH)_2纳米膜具有较好的电化学性质,当充放电电流密度为1 A/g时,电极材料的比容量达到539.6 F/g。
        A kind of α-Ni(OH)_2 nano films were successfully synthesized via using chemical precipitation method at room temperature. Reaction temperature and sorts of surfactant were discussed as synthesis conditions. The compositions,structures and morphologies of the products were characterized by XRD,SEM,TEM and BET. Result showed that the synthesis temperature,the type and amount of surfactants have a great impact on the composition and morphology of the product. At room temperature,the samples for film thickness about 2 nm and has a lot of folds,the area of sample 206. 8 m~2/ g. The surface fold of product began to disappear and uneven,particulate matter generated under 50 ℃,and at 80 ℃ fold structure of product disappear,mainly for reunion together particle composition. In addition,cyclic voltammetry and galvanostatic charge-discharge were used to investigate the electrochemical properties of α-Ni(OH)_2 nanofilms,and the results revealed that α-Ni(OH)_2 nano films had excellent electrochemical properties.When the current density is 1 A / g,specific capacitance is 539. 6 F / g.
引文
[1]Xu C,Li B,Du H,et al.Supercapacitive studies on amorphous Mn O2in mild solutions[J].J Power Sources,2008,184(2):691-694.
    [2]Tsay K C,Zhang L,Zhang J J.Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor[J].Electrochim Acta,2012,60:428-436.
    [3]薛璐璐,秦占斌,高筠,等.超级电容器电极材料研究最新进展[J].化学工程师,2015(7):44-48.
    [4]Wu Z S,Sun Y,Tan Y Z,et al.Three-dimensional graphene-based macro-and mesoporous frameworks for highperformance electrochemical capacitive energy storage[J].J Am Chem Soc,2012,134(48):19532-19535.
    [5]Li Y H,Huang K L,Liu S Q.Meso-macroporous Co3O4electrode prepared by polystyrene spheres and carbowax templates for supercapacitors[J].J Solid State Electr,2011,15(3):587-592.
    [6]陈亚,覃文庆,王佳伟,等.阳极氧化法制备超级电容器用多孔Mn O2电极[J].电池,2015,45(3):132-134.
    [7]Tummala R,Guduru R K,Mohanty P S.Nanostructured Co3O4electrodes for supercapacitor applications from plasma spray technique[J].J Power Sources,2012,209:44-51.
    [8]张永起,夏新辉,康婧,等.多孔氢氧化钴薄膜的制备及其超级电容器性能[J].科学通报,2012,57(27):2644-2648.
    [9]肖凤,杨飞.介孔氧化镍薄膜的制备及超级电容器性能研究[J].材料导报,2014,28(2):32-34.
    [10]陈野,舒畅,张春霞,等.氧化镍的合成及其超级电容性能[J].应用化学,2007,27(8):873-877.
    [11]王凯,李立伟,韩美佳.反复浸渍法制备氢氧化镍及电化学性能研究[J].电源技术,2014,138(3):484-485.
    [12]金小青,曹杰,胡忠山,等.石墨烯/钴镍双氢氧化物复合材料的制备及其超电容特性[J].应用化学,2015,32(5):583-590.
    [13]刘长久,尚伟.MH/Ni电池镍正极的研究新进展[J].广西科学,2005,12(2):135-140.
    [14]Vijayakumar S,Muralidharan G.Electrochemical supercapacitor behaviour ofα-Ni(OH)2nanoparticles synthesized via green chemistry route[J].J Electroanal Chem,2014,727:53-58.
    [15]王凯,李立伟,韩美佳.反复浸渍法制备氢氧化镍及电化学性能研究[J].电源技术,2014,38(3):484-485.
    [16]Yuan P,Zhang N,Zhang D,et al.Fabrication of nickelfoam-supported layered zinc-cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors[J].Chem Commun,2014,50:11188-11191.