大跨度封闭式柱面屋盖脉动风荷载非高斯分布试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment study on non-Gaussian distribution of fluctuating wind load on long-span enclosed cylindrical shell roof
  • 作者:李玉学 ; 白硕 ; 杨庆山 ; 田玉基
  • 英文作者:LI Yuxue;BAI Shuo;YANG Qingshan;TIAN Yuji;School of Civil Engineering,Shijiazhuang Tiedao University;Innovation Center for Wind Engineering and Wind Energy Technology of Hebei Province,Shijiazhuang Tiedao University;School of Civil Engineering,Chongqing University;Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment,Beijing Jiaotong University;
  • 关键词:大跨度封闭式柱面屋盖 ; 脉动风荷载 ; 风洞试验 ; 非高斯分布 ; 区域划分
  • 英文关键词:long-span enclosed cylindrical shell roof;;fluctuating wind load;;wind tunnel test;;non-Gaussian distribution;;zone division
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:石家庄铁道大学土木工程学院;石家庄铁道大学河北省风工程与风能利用工程技术创新中心;重庆大学土木工程学院;北京交通大学结构风工程与城市风环境北京市重点实验室;
  • 出版日期:2019-04-24 17:11
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51278314; 51878040);; 河北省自然科学基金项目(E2012210002);; 河北省高等学校科学技术研究优秀青年基金项目(YQ2013028)
  • 语种:中文;
  • 页:JZJB201907007
  • 页数:8
  • CN:07
  • ISSN:11-1931/TU
  • 分类号:66-73
摘要
在大气边界层风洞中对一大跨度封闭式柱面屋盖结构进行刚性模型同步测压试验,获得了结构表面测点在36个风向角下的风压数据,根据测试结果对结构脉动风荷载非高斯分布规律及其形成机理进行了分析。通过对结构表面测点脉动风荷载概率密度分布曲线与标准高斯分布曲线对比分析,发现结构表面受特征湍流影响显著部位,其测点脉动风荷载非高斯分布特性比较突出;通过对测点间脉动风荷载相关性分析,发现特征湍流影响显著部位,大尺度漩涡不满足独立同分布,相关性较强,风压信号表现为非高斯特性。以试验研究为基础,通过测点脉动风荷载测试信号的斜度值和峰态值累积概率分布曲线,得到累积概率为80%对应的斜度值和峰态值,并以此为标准,划分了该柱面屋盖表面高斯与非高斯区域,发现不同风向角下,在迎风前缘来流撞击位置以及结构边角附近为非高斯区域,气流平稳位置为高斯区域。
        Synchronized pressure tests on a rigid model of long-span enclosed cylindrical shell roof was conducted in a boundary layer wind tunnel,and measurements were taken for 36 wind directions.The non-Gaussian distribution characteristics and formation mechanism of fluctuating wind load were studied based on the wind load data obtained from the wind tunnel test.Firstly,the comparative analysis between probability density distribution of fluctuating wind load and standard Gaussian probability density distribution was done.The results show that the non-Gaussian distribution characteristics are relatively outstanding at the locations which are greatly influenced by the signature turbulence.Secondly,the formation mechanism of non-Gaussian distribution was discussed by analyzing the correlation of fluctuating wind loads between different taps.At the locations which are greatly influenced by the signature turbulence,the vortexes do not satisfy with the independent identically distribution,and are greatly correlated;as a result,the characteristics of non-Gaussian distribution are relatively strong.Finally,making use of the value of skewness and kurtosis which are corresponding to the 80% cumulative probability,the Gaussian and non-Gaussian zones of longspan enclosed cylindrical shell roof were divided.The results show that the wake area,corner area and the areas which are impacted by inflow belong to the non-Gaussian zone,and airflow-steady areas belong to the Gaussian zone.
引文
[1]HOLMES J D.Wind loading of structures[M].2nd ed.Oxon:Taylor&Francis,2007:27-28.
    [2]张相庭.结构风工程:理论·规范·实践[M].北京:中国建筑工业出版社,2006:1-2.(ZHANG Xiangting.Wind engineering of structures:theory,code,practice[M].Beijing:China Architecture&Building Press,2006:1-2.(in Chinese))
    [3]建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社,2012.(Load code for the design of building structures:GB 50009-2012[S].Beijing:China Architecture and Building Press,2012.(in Chinese))
    [4]KO N H,YOU K P,KIM Y M.The effect of nonGaussian local wind pressures on a side face of a square building[J].Journal of Wind Engineering and Industrial Aerodynamics,2005,93(5):383-397.
    [5]LI Q S,HU S Y,DAI Y M,et al.Field measurements of extreme pressures on a flat roof of a low-rise building during typhoons[J].Journal of Wind Engineering and Industrial Aerodynamics,2012,111(12):14-29.
    [6]MARTINS N E,MARTIN-PEREZ B,BASKARAN A.Application of statistical models to predict roof edge suctions based on wind speed[J].Journal of Wind Engineering and Industrial Aerodynamics,2016,150:42-53.
    [7]YANG Q S,TIAN Y J.Model of probability density function of non-Gaussian wind pressure with multiple sample[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,140:67-78.
    [8]徐海巍,楼文娟,余世策.建筑围护结构内部设计风荷载研究[J].建筑结构学报,2016,37(12):41-48.(XU Haiwei,LOU Wenjuan,YU Shice.Study on design wind loads inside a building envelope[J].Journal of Building Structures,2016,37(12):41-48.(in Chinese))
    [9]KEERTHANA M,HARIKRISHNA P.Hermite model based estimation of peak factors for tall buildings subjected to wind induced pressures[J].Journal of Structural Engineering,2017,44(3):203-213.
    [10]吴迪,武岳,孙瑛,等.大跨度铁路站房屋盖结构风洞试验与等效静力风荷载[J].建筑结构学报,2012,33(1):43-50.(WU Di,WU Yue,SUN Ying,et al.Wind tunnel test and equivalent static wind loads on large span station buildings[J].Journal of Building Structures,2012,33(1):43-50.(in Chinese))
    [11]李玉学,白硕,杨庆山,等.大跨度柱面网壳结构风荷载特性风洞试验研究[J].建筑结构学报,2015,36(4):105-111.(LI Yuxue,BAI Shuo,YANGQingshan,et al.Experimental study of wind load characteristics on large-span cylindrical latticed shell[J].Journal of Building Structures,2015,36(4):105-111.(in Chinese))
    [12]LI Y Q,TAMURA Y,YOSHIDA A,et al.Wind loading and its effects on single-layer reticulated cylindrical shells[J].Journal of Wind Engineering and Industrial Aerodynamics,2006,94(12):949-973.
    [13]叶继红,侯信真.大跨屋盖脉动风压的非高斯特性研究[J].振动与冲击,2010,29(7):9-16.(YE Jihong,HOU Xinzhen.Non-Gaussian features of fluctuating wind pressures on long span roof[J].Journal of Vibration and Shock,2010,29(7):9-16.(in Chinese))
    [14]赵阳,林寅,余世策.大型低矮圆柱壳结构风荷载特性的风洞试验[J].浙江大学学报(工学版),2014,48(5):820-826.(ZHAO Yang,LIN Yin,YU Shice.Wind-tunnel test of wind loads on large cylindrical structures with very low aspect ratio[J].Journal of Zhejiang University(Engineering Science),2014,48(5):820-826.(in Chinese))
    [15]冯鹤,黄铭枫,李强,等.大跨干煤棚网壳风振时程分析和等效静风荷载研究[J].振动与冲击,2016,35(1):164-173.(FENG He,HUANG Mingfeng,LIQiang,et al.Wind-induced vibration time history analysis and equivalent static wind loads for long-span lattice shells[J].Journal of Vibration and Shock,2016,35(1):164-173.(in Chinese))
    [16]HUANG M F,LOU W J,PAN X T,et al.Hermite extreme value estimation of non-Gaussian wind load process on a long-span roof structure[J].Journal of Structural Engineering,2014,140(9):758-782.
    [17]陈志良.空气动力学[M].北京:北京航空航天大学出版社,2009:69-70.(CHEN Zhiliang.Aerodynamics[M].Beijing:Beihang University Press,2009:69-70.(in Chinese))
    [18]董欣,叶继红.大跨屋盖表面旋涡的PIV试验研究[J].工程力学,2014,31(11):161-169.(DONG Xin,YE Jihong.PIV experimental investigation of vortices on large-span roofs[J].Engineering Mechanics,2014,31(11):161-169.(in Chinese))
    [19]何选森.随机过程[M].北京:人民邮电出版社,2009:113-117.(HE Xuansen.Stochastic processes[M].Beijing:Posts&Telecom Press,2009:113-117.(in Chinese))