聚乙烯还原氧化镍制备Ni-C微粉析氢催化剂的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Ni-C Powder as Hydrogen Evolution Catalyst by Reduction of Ni_2O_3 with PE
  • 作者:张文帝 ; 李泰霖 ; 叶霖海 ; 洪澜
  • 英文作者:ZHANG Wen-di;LI Tai-lin;YE Lin-hai;HONG Lan;School of Iron and Steel,Soochow University;
  • 关键词:Ni-C微粉 ; 析氢催化剂 ; 热裂解 ; 聚乙烯 ; Ni_2O_3
  • 英文关键词:Ni-C powder;;electrocatalys;;thermal decomposition;;polyethylene;;Ni_2O_3
  • 中文刊名:METE
  • 英文刊名:Nonferrous Metals(Extractive Metallurgy)
  • 机构:苏州大学沙钢钢铁学院;
  • 出版日期:2019-05-12
  • 出版单位:有色金属(冶炼部分)
  • 年:2019
  • 基金:国家自然科学基金资助项目(51774206)
  • 语种:中文;
  • 页:METE201905010
  • 页数:6
  • CN:05
  • ISSN:11-1841/TF
  • 分类号:44-49
摘要
利用聚乙烯(PE)与Ni_2O_3混合后在氩气气氛下反应制备Ni-C微粉。探究质量混合比与反应温度对Ni-C微粉生成及性能的影响。采用同步热分析仪(TG-DSC)监测反应过程,Ni-C微粉的物相组成和微观形貌由XRD和SEM-EDS确定,Ni-C微粉析氢催化性能由电化学工作站测试(Parstat 3000A)。研究表明,PE与Ni_2O_3混合物在加热过程中PE熔化后与Ni_2O_3反应。温度高于1 073K条件下,固相产物由镍、碳单质组成。固相产物的镍含量随样品中Ni_2O_3含量升高而升高;温度升高使镍单质的团聚程度增大。样品PE/Ni_2O_3=1/3在1 073K下所得Ni-C微粉优于铂片的析氢催化性能,低于铂片电极的过电势。在1 000次循环伏安测试后仍保持了良好的析氢催化效果。
        Ni-C powder was prepared by heating homogeneous mixtures of PE and Ni_2O_3 under Ar atmosphere.Effects of mixing ratio and temperature on formation and properties of Ni-C powder were investigated.Heating process was monitored by thermo-gravimetry coupled with differential scanning calorimeter(TG-DSC).Phase composition and microstructure of Ni-C powder were characterized by XRD and SEM-EDS.Catalytic ability of Ni-C powder for hydrogen evolution reaction(HER)was studied by electrochemical workstation(Parstat 3000 A).The results show that Ni-C powders can be fabricated by reduction of Ni_2O_3 with PE after its melting.Nickel content in solid residue rises with increase of Ni_2O_3 content in mixtures.Higher temperature favors agglomeration of nickel powders.Ni-C powder obtained from PE/Ni_2O_3=1/3 at 1 073 Kexhibits superior catalytic property to Pt plate.Good stability of catalytic performance remains after 1 000 cycles of cyclic-potential test.
引文
[1]COOK TIMOTHY R,DOGUTAN DILEK K,REECESTEVEN Y,et al.Solar energy supply and storage for the legacy and nonlegacy worlds[J].Chemical Reviews,2010(11):6474-6502.
    [2]ARMAROLI N,BALZANI V.The hydrogen issue[J].Chemsuschem,2011,4(1):21-36.
    [3]YANG Y M,LIU J,GUO S J,et al.A nickel nanoparticle/carbon quantum dot hybrid as an efficient electrocatalyst for hydrogen evolution under alkaline conditions[J].Journal of Materials Chemistry A,2015,3(36):18598-18604.
    [4]ZHENG Y,JIAO Y,ZHU Y H,et al.Hydrogen evolution by a metal-free electrocatalyst[J].Nature Communications,2014,5,doi.org/10.1038/ncomms4783.
    [5]NIE Y,LI L,WEI Z D.Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J].Chemical Society Reviews,2015,46(25):2168-2201.
    [6]ZOU X X,ZHANG Y.Noble metal-free hydrogen evolution catalysts for water splitting[J].Chemical Society Reviews,2015,44(15):5148-5180.
    [7]TONG R,SUN Z,ZHANG F,et al.N and V co-incorporated Ni nanosheets for enhanced hydrogen evolution reaction[J].ACS Sustainable Chemistry&Engineering,2018,doi:10.1021/acssuschemeng.8b03600.
    [8]WANG F L,CHEN G,LIU X H,et al.Advanced electrocatalytic performance of Ni-based materials for oxygen evolution reaction[J].ACS Sustainable Chemistry&Engineering,2018,doi:10.1021/acssuschemeng.8b03636.
    [9]RONALD MICHALSKY,ZHANG Y J,PETERSONANDREW A.Trends in the hydrogen evolution activity of metal carbide catalysts[J].ACS Catalysis,2014,4(4):1274-1278.
    [10]VIJ V,SULTAN S,M HARZANDI A,et al.Nickelbased electrocatalysts for energy related applications:Oxygen reduction,oxygen evolution,and hydrogen evolution reactions[J].ACS Catalysis,2017,doi:10.1021/acscatal.7b01800.
    [11]徐文策,王红霞.非晶非贵金属催化剂的研究进展及展望[J].催化学报,2017,38(6):991-1005.
    [12]YU Y F,HUANG S Y,LI Y P,et al.Layer-dependent electrocatalysis of MoS2 for hydrogen evolution[J].Nano Letters,2014,14(2):553-560.
    [13]EFTEKHARI A.Electrocatalysts for hydrogen evolution reaction[J].International Journal of Hydrogen Energy,2017,42(16):11053-11077.
    [14]POPCZUN E J,MCKONE J R,READ C G,et al.Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J].Journal of the American Chemical Society,2013,135(25):9267-9270.
    [15]AL-SALEM S M,ANTELAVA A,CONSTANTINOUA,et al.A review on thermal and catalytic pyrolysis of plastic solid waste(PSW)[J].Journal of Environmental Management,2017,197:177-198.
    [16]AL-SALEM S M,LETTIERI P,BAEYENS J.Recycling and recovery routes of plastic solid waste(PSW):A review[J].Waste Management,2009,29(10):2625-2643.
    [17]WU J L,CHEN T J,LUO X T,et al.TG/FTIR analysis on co-pyrolysis behavior of PE,PVC and PS[J].Waste Management,2014,34(3):676-682.
    [18]XU F F,WANG B,YANG D,et al.Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR:Pyrolysis behaviors and kinetic analysis[J].Energy Conversion and Management,2018,171:1106-1115.
    [19]韩长日,宋小平.精细无机化学品制造技术[M].北京:科学技术文献出版社,2008:198-200.
    [20]ANUAR SHARUDDIN S D,ABNISA F,WAN DAUDW M A,et al.A review on pyrolysis of plastic wastes[J].Energy Conversion and Management,2016,115:308-326.
    [21]迪安J A.兰氏化学手册[M].13版.北京:科学出版社,1991:1467-1533.
    [22]印永嘉,奚正楷,张树永,等.物理化学简明教程[M].4版.北京:高等教育出版社,2007:420-432.