空间气冷反应堆堆芯流动换热数值仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study of Flow and Heat Transfer Characteristic of Space Gas-cooled Nuclear Reactor Core
  • 作者:孟涛 ; 赵富龙 ; 程坤 ; 曾陈 ; 谭思超
  • 英文作者:MENG Tao;ZHAO Fulong;CHENG Kun;ZENG Chen;TAN Sichao;Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,Harbin Engineering University;
  • 关键词:空间气冷反应堆 ; 数值模拟 ; 流动换热热性
  • 英文关键词:space gas-cooled nuclear reactor;;numerical simulation;;flow and heat transfer characteristic
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:哈尔滨工程大学核安全与仿真技术国防重点学科实验室;
  • 出版日期:2018-11-27 10:41
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 基金:国家重点研发计划资助项目(2017YFE0106200);; 先进反应堆工程与安全教育部重点实验室开放基金资助项目(ARES-2018-02);; 核反应堆系统设计技术重点实验室基金资助项目(HT-KFKT-09-2018004)
  • 语种:中文;
  • 页:YZJS201907016
  • 页数:8
  • CN:07
  • ISSN:11-2044/TL
  • 分类号:118-125
摘要
以美国普罗米修斯计划反应堆为参考,建立了空间气冷反应堆堆芯结构的三维模型,利用蒙特卡罗方法计算得到了堆芯真实功率分布,并使用Star-CCM+软件开展了1/6堆芯的流动换热计算,分析得到了堆芯温度场、速度场和压力场的分布情况,评估了现有设计中仍待优化之处,并提出了相关的优化建议。计算结果表明,该反应堆设计可将冷却剂加热到工作温度,能满足基本的技术指标。但从优化角度考虑,需对堆芯入口段与出口段进行优化设计,通过改变入口管与压力容器间的角度等,可降低不必要的能量损失,提高堆芯出口温度与速度分布均匀性,同时降低冷却剂对诸如气轮机等设备的不利影响。
        The Prometheus project reactor was modeled as a prototype and numerical analysis using CFD software was also conducted. The power profile of the reactor core was obtained by the Monte Carlo method and the thermal-hydraulic simulation of one-sixth of the reactor was conducted by using the Star-CCM+ software. The temperature field, velocity field and pressure field were acquired and possible optimization suggestions were proposed based on the evaluation of the current model. It is shown that the coolant in the reactor design can be heated up to the design temperature and the main technology requirements can be satisfied. However, optimization is still needed in the reactor inlet and outlet region from the perspective of optimization. The direction of inlet nozzle can be changed to reduce unnecessary loss and increase the uniformity of temperature and velocity field at the outlet. Meanwhile, negative effects of the coolant on the turbine and other equipment are also reduced.
引文
[1] LEVINE B.Space nuclear power plant pre-conceptual design report,for information[R].Niskayuna:Knolls Atomic Power Laboratory (KAPL),2006.
    [2] 朱安文,刘磊,马世俊,等.空间核动力在深空探测中的应用及发展综述[J].深空探测学报,2017,4(5):397-404.ZHU Anwen,LIU Lei,MA Shijun,et al.An overview of the use and development of nuclear power system in deep space exploration[J].Journal of Deep Space Exploration,2017,4(5):397-404(in Chinese).
    [3] ANGELO J A.Space nuclear power[M].Malabar,Florida:Orbit Book Company Inc.,1985.
    [4] EL-GENK M S,TOURNIER J M.High temperature water heat pipes radiator for a Brayton space reactor power system[C]//Space Technology and Applications International Forum (STAIF).USA:AIP,2006.
    [5] DRAGUNOV Y G.Fast-neutron gas-cooled reactor for the megawatt-class space bimodal nuclear thermal system[J].Engineering and Automation Problems,2015,2:117-120(in Russian).
    [6] ASHCROFT J,ESHELMAN C.Summary of NR program Prometheus efforts[C]//AIP Conference Proceedings.USA:AIP,2006.
    [7] WU Y,TEAM F.CAD-based interface programs for fusion neutron transport simulation[J].Fusion Engineering and Design,2009,84(7):1 987-1 992.
    [8] WU Y,SONG J,ZHENG H,et al.CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J].Annals of Nuclear Energy,2015,82:161-168.
    [9] EL-GENK M S,TOURNIER J M.Noble gas binary mixtures for gas-cooled reactor power plants[J].Nuclear Engineering and Design,2008,238(6):1 353-1 372.
    [10] El-GENK M S,TOURNIER J M.Selection of noble gas binary mixtures for Brayton space nuclear power systems[C]//Proceedings of 4th International Energy Conversion Engineering Conference and Exhibit (IECEC).San Diego,California:American Institute of Aeronautics and Astronautics,2006.
    [11] TOURNIER J M P,EL-GENK M S.Properties of noble gases and binary mixtures for closed Brayton cycle applications[J].Energy Conversion and Management,2008,49:469-492.
    [12] DRAGUNOV Y G,SMETANNIKOV V P,GABARAEV B A,et al.On the choice of correlations for calculating the heat transfer coefficient in binary gas mixtures[J].Journal of Engineering Thermophysics,2013,22(1):30-42.
    [13] ELISTRATOV S L,VITOVSKII O V,SLESAREVA E Y.Experimental investigation of heat transfer of helium-xenon mixtures in cylindrical channels[J].Journal of Engineering Thermophysics,2015,24(1):33-35.
    [14] NAKORYAKOV V E,ELISTRATOV S L,VITOVSKY O V,et al.Experimental investigation of heat transfer in helium-xenon mixtures in triangle channels[J].Journal of Engineering Thermophysics,2015,24(2):139-142.
    [15] NAKORYAKOV V E,VITOVSKY O V.Study of heat transfer of a helium-xenon mixture in heated channels with different cross-sectional shapes[J].Journal of Applied Mechanics and Technical Physics,2017,58(4):664-669.
    [16] VITOVSKY O V,NAKORYAKOV V E,SLESAREVA E Y.Heat transfer of helium xenon mixture on the initial pipe section[J].Journal of Engineering Thermophysics,2015,24(4):338-341.
    [17] SHIH T H,LIOU W W,SHABBIR A,et al.A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows:Model development and validation[J].Computers Fluids,1994,24(3):227-238.
    [18] 沈昊,熊进标,程旭.棒束单相流动CFD的不确定性量化研究[J].核技术,2018,41(3):71-80.SHEN Hao,XIONG Jinbiao,CHENG Xu.Uncertainty quantification study of CFD on the rod bundle flow[J].Nuclear Techniques,2018,41(3):71-80(in Chinese).