基于氢氧稳定同位素的澜沧江流域水体来源差异分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Analysis of Different Water Source in Lancang River Basin Based on Hydrogen-oxygen Stable Isotope
  • 作者:徐飘 ; 唐咏春 ; 张思思 ; 刘德富 ; 杨正健 ; 马骏
  • 英文作者:XU Piao;TANG Yong-chun;ZHANG Si-si;LIU De-fu;YANG Zheng-jian;MA Jun;Hubei Key Laboratory of Ecological Restoration of River-lakes and Algal Utilization,College of Civil construction and Environment, Hubei University of Technology;Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education,College of Hydraulic and Environmental Engineering, Three Gorges University;
  • 关键词:稳定同位素 ; 季节特征 ; 水体来源 ; 氘过量参数 ; 澜沧江
  • 英文关键词:stable isotopes;;seasonal characteristics;;water source;;deuterium excess parameter;;Lancang River
  • 中文刊名:ZNSD
  • 英文刊名:China Rural Water and Hydropower
  • 机构:湖北工业大学土木建筑与环境学院河湖生态修复与藻类利用湖北省重点实验室;三峡大学水利与环境学院三峡库区生态环境教育部工程研究中心;
  • 出版日期:2019-02-15
  • 出版单位:中国农村水利水电
  • 年:2019
  • 期:No.436
  • 基金:国家自然科学基金项目(91647207,51509086,51709096);; 国家重点研究计划(2016YFC0402204,2016YFC0401702)
  • 语种:中文;
  • 页:ZNSD201902009
  • 页数:7
  • CN:02
  • ISSN:42-1419/TV
  • 分类号:49-55
摘要
研究不同时期澜沧江流域不同河段水体补给来源差异,从而为该流域的水文循环研究提供数据支撑。通过对枯水期(2017年2月)和丰水期(2017年6月)澜沧江云南段地表水体δD和δ~(18)O值的测定,得出δD与δ~(18)O值在枯水期变化范围分别为-16.90%~-12.50%与-2.012%~-1.694%,而在丰水期分别为-10.55%~-7.65%与-1.438%~-1.102%,初步揭示了该流域水体氢氧同位素的空间分布特征。结果表明:枯水期与丰水期澜沧江云南段地表水体δD、δ~(18)O值的沿程变化趋势基本一致,且枯水期的δD、δ~(18)O值均明显低于丰水期。在枯水期,研究区上游自然河段地表水体主要受冰雪融水与蒸发作用影响,中游水库段受一定蒸发作用与支流汇入影响,下游自然河段主要受大气降水补给。在丰水期,整个澜沧江云南段地表水主要受大气降水影响,同时中游水库段受一定支流汇入影响,下游自然河段受一定人类活动影响。
        In order to study the differences of water supply sources for different river reaches in various periods, then provide data support for the hydrological cycle research of Lancang River, large variation ranges were observed for δD(-16.90%~-12.50%) and δ~(18)O(-2.012%~-1.694%) in the dry season, δD(-10.55%~-7.65%) and δ~(18)O(-1.438%~-1.102%) in the wet season by measuring δD and δ~(18)O values of the surface water of Lancang River in Yunnan Province during the dry season(February 2017) and the wet season(June 2017). The spatial distribution characteristics of hydrogen and oxygen isotopes in the watershed were preliminarily revealed. The results showed that: The variation trends of δD and δ~(18)O values of the surface water of Lancang River in Yunnan Province during the dry season were similar to those during the wet season and that Moreover, δD and δ~(18)O values in the dry season were much lower than those in the wet season. During the dry season, the surface water in the upstream natural reach of the study area was mainly influenced by glacier snowmelt and the strong evaporation, in the middle reach by the evaporation and the tributary inflow, and in the downstream natural reach by the precipitation. During the wet season, the surface water of the whole Lancang River in Yunnan Province was mainly affected by the precipitation. Meanwhile, the
引文
[1] Rozanski, Kazimierz, Froehlich, et al. Environmental isotopes in the hydrological cycle: principles and applications, v. III: Surface water[M]. Unesco, 2001:31-79.
    [2] Din?er T, Davis G H. Application of environmental isotope tracers to modeling in hydrology[J]. Journal of Hydrology, 1984,68(1):95-113.
    [3] Shi H, Liu S R, Zhao X G. Application of stable hydrogen and oxygen isotope in water circulation[J]. Journal of Soil Water Conservation, 2003,17(2):163-166.
    [4] 林光辉. 稳定同位素生态学[M]. 北京:高等教育出版社, 2013:66-75.
    [5] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964,16(4):436-468.
    [6] 李广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013,22(11):1 458-1 465.
    [7] 丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013,87(5):661-676.
    [8] 姚俊强, 刘志辉, 郭小云, 等. 呼图壁河流域水体氢氧稳定同位素特征及转化关系[J]. 中国沙漠, 2016,36(5):1 443-1 450.
    [9] 蒲焘. 基于水化学与同位素的典型海洋型冰川流域水文过程研究[D]. 兰州:兰州大学, 2013:83-90.
    [10] Penna D, Meerveld H J V, Zuecco G, et al. Hydrological response of an alpine catchment to rainfall and snowmelt events[J]. Journal of Hydrology, 2016,537:14-16.
    [11] 高晶, 姚檀栋, 田立德, 等. 羊卓雍错流域湖水氧稳定同位素空间分布特征[J]. 冰川冻土, 2008,30(2):338-343.
    [12] Gremillion P, Wanielista M. Effects of evaporative enrichment on the stable isotope hydrology of a central Florida (USA) river[J]. Hydrological Processes, 2015,14(8):1 465-1 484.
    [13] Li C, Yang S, Lian E, et al. Damming effect on the Changjiang (Yangtze River) River water cycle based on stable hydrogen and oxygen isotopic records[J]. Journal of Geochemical Exploration, 2016,165:125-133.
    [14] 许琦, 李建鸿, 孙平安, 等. 西江水氢氧同位素组成的空间变化及环境意义[J]. 环境科学, 2017,38(6):2 308-2 316.
    [15] 陈丽晖, 何大明. 澜沧江-湄公河水电梯级开发的生态影响[J]. 地理学报, 2000,(5):577-586.
    [16] 冯志鹏. 澜沧江梯级水电站优化调度方法研究[D]. 郑州:华北水利水电大学, 2016:15-21.
    [17] 朱春灵. 澜沧江小湾水库水环境和氮磷营养盐的时空分异特征初步研究[D]. 昆明:云南大学, 2013:19-29.
    [18] 李丽娟, 李海滨, 王娟. 澜沧江水文与水环境特征及其时空分异[J]. 地理科学, 2002,22(1):49-56.
    [19] 李丽娟. 澜沧江水环境质量评价与成因分析[J]. 地理学报, 1999,(b06):127-132.
    [20] 李斌, 李丽娟, 李海滨, 等. 1960-2005年澜沧江流域极端降水变化特征[J]. 地理科学进展, 2011,30(3):290-298.
    [21] 于文金, 黄亦露, 邵明阳. 澜沧江流域极端天气灾害特征及波动趋势[J]. 生态学报, 2015,35(5):1 378-1 387.
    [22] Yuan H Z, Zhang L P, Geng M M, et al. Comparison of methods for hydrogen and oxygen isotopes analysis of water samples by flash HT and GasBench II-IRMS system[J]. Journal of Chinese Mass Spectrometry Society, 2013,34(6):347-352.
    [23] 陶成, 刘文汇, 杨华敏, 等. 油气田水中氢氧同位素分析新技术及应用[J]. 石油实验地质, 2012,34(2):199-201.
    [24] 张琳, 刘福亮, 贾艳琨, 等. 稳定同位素分析数据标准化校正方法的讨论[J]. 环境化学, 2011,30(3):727-728.
    [25] 赵鸿源. 对GB8170-87《数值修约规则》的探讨[J]. 物理测试, 1995,(1):46-48.
    [26] 张自超, 丁悌平. 关于同位素地质测试数据的数据处理及结果表示[J]. 岩矿测试, 2000,19(1):77-79.
    [27] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961,133(3 465):1 702-1 703.
    [28] 章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009,31(4):31-37.
    [29] 徐振, 刘玉虹, 王中生, 等. 卧龙降水稳定同位素与季风活动的关系[J]. 环境科学, 2008,29(4):1 007-1 013.
    [30] 蒋保刚, 闫正, 宋献方, 等. 汉江上游金水河流域河水的化学特征[J]. 环境化学, 2013,(6):980-986.
    [31] 吉磊. 基于氢氧稳定同位素的玛纳斯河流域地表水与地下水转化关系研究[D]. 新疆石河子:石河子大学, 2016:30-33.
    [32] 成玉婷, 李鹏, 徐国策, 等. 丹江流域氢氧同位素变化特征[J]. 水土保持学报, 2014,28(5):129-133.