940nm垂直腔面发射激光器的设计及制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and fabrication of 940 nm vertical-cavity surface-emitting lasers
  • 作者:于洪岩 ; 尧舜 ; 张红梅 ; 王青 ; 张杨 ; 周广正 ; 吕朝晨 ; 程立文 ; 郎陆广 ; 夏宇 ; 周天宝 ; 康联鸿 ; 王智勇 ; 董国亮
  • 英文作者:Yu Hong-Yan;Yao Shun;Zhang Hong-Mei;Wang Qing;Zhang Yang;Zhou Guang-Zheng;Lü Zhao-Chen;Cheng Li-Wen;Lang Lu-Guang;Xia Yu;Zhou Tian-Bao;Kang Lian-Hong;Wang Zhi-Yong;Dong Guo-Liang;Institute of Laser Engineering, Beijing University of Technology;Sino-Semiconductors Technologies Co., Ltd.;College of Physics Science and Technology, Yangzhou University;
  • 关键词:垂直腔面发射激光器 ; 分布式布拉格反射镜 ; 量子阱 ; 金属有机化合物气相沉积
  • 英文关键词:vertical cavity surface emitting lasers;;distributed Bragg reflector;;quantum well;;metalorganic chemical vapor deposition
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京工业大学激光工程研究院;华芯半导体科技有限公司;扬州大学物理科学与技术学院;
  • 出版日期:2019-03-11 17:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 语种:中文;
  • 页:WLXB201906016
  • 页数:7
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:129-135
摘要
利用PICS3D计算得到InGaAs/GaAsP应变补偿量子阱的增益特性,得到量子阱的各项参数,再通过传输矩阵理论和TFCalc膜系设计软件分别仿真出上下分布式布拉格反射镜的白光反射谱.采用金属有机化合物气相沉积技术外延生长了垂直腔面发射激光器结构,之后通过干法刻蚀、湿法氧化以及金属电极等芯片技术制备得到8μm氧化孔径的VCSEL芯片.最终,测试得到其光电特性实现室温下阈值电流和斜效率分别为0.95 mA和0.96 W/A,在6 mA电流和2 V电压下输出功率达到4.75 mW,并测试了VCSEL的高温特性.
        A high slope efficiency vertical-cavity surface-emitting laser(VCSEL) is described. The InGaAs/GaAsP strain compensated multiple quantum wells(MQWs) are designed by PICS3 D. The wavelength redshift occurs due to the thermal effect, the lasing wavelength of MQWs is designed to be around 928 nm. The active region consists of five compressively strained 4.4 nm thick In_(0.16)Ga_(0.84)As quantum wells separated and surrounded by6.2 nm thick GaAs_(0.88)P_(0.12) tensile strained compensation layers to obtain the high quantum efficiency and ensure the stress release. Subsequently, the MQWs are grown by metal-organic chemical vapor deposition(MOCVD) and the photoluminescence(PL) spectrum is measured using an Nd:YAG laser(532 nm excitation),of which the peak wavelength is approximately 928 nm and the full width at half maximum is nearly 17.1 nm.The resonant cavity is surrounded by p-and n-DBRs. The n-DBRs are designed to be a 28-period AlAs/Al_(0.12)Ga_(0.88)As and 3.5-period Al_(0.90)Ga_(0.10)As/Al_(0.12)Ga_(0.88)As, and the p-DBR is designed to be a 23-period Al_(0.90)Ga_(0.10)As/Al_(0.12)Ga_(0.88)As. The thickness of each a material is λ/4 n(λ=940 nm, n represents refractive index), and 20 nm graded layer is inserted in the interface between two types of materials. The p-/n-DBRs' experiment PL reflection spectra(using a white illuminant) are carried out, the central wavelength is around938.7 nm, and the reflectivity values of p-/n-DBRs are nearly 99.0% and 99.7%, respectively. The VCSELs are grown by MOCVD technique, and treated by dry etching, wet oxidation, metal electrode technology and other processes. In the process of dry etching, the top mesa is treated by inductively coupled plasma with BCl_3 and Cl_2 chemistry. In order to expose the oxide layer the wet oxidized process is carried out, and the etching depth is nearly 3500 nm. An oxidation furnace is heated for 15 min prior to oxidation. Then the oxide aperture is shaped by the wet nitrogen oxidation furnace at 425 ℃ with an N2 flow of 200 seem, and the oxide rate is approximately 0.40 μm/min for A_(0.98)Ga_(0.02)As. The diameter of oxide aperture is made into an 8 μm diameter.In the process of metal electrode technology, AuGeNi alloy is sputtered on the top surface to form p-type ohmic contact, and Ti/Pt/Au is evaporated on the back surface of substrate to form an n-type ohmic contact. Rapid thermal annealing at 350℃ in a nitrogen atmosphere is carried out subsequently to obtain a good-quality ohmic contact. Finally, we test the VCSELs' L-I-V characteristics and spectra in different areas. In area 1,room-temperature lasing at around 940 nm is achieved with a threshold current of 0.95 mA, a slope efficiency of0.96 W/A, and an output power of 4.75 mW. In area 2, threshold current is 1 mA, a slope efficiency is 0.81 W/A at 25℃ and threshold current is 1.9 mA, slope efficiency is 0.57 W/A at 25℃. The output power values reach up to 3.850 mW and 2.323 mW at 25℃ and 80℃, respectively.
引文
[1] Fiebig C, Erbert G, Pittroff W, Wenzel H, Maaβdorf A,Einfeldt S, Trankle G 2007 Proc. SPIE 6456 64560K
    [2] Berk Y, Karni Y, Klumel G, Dan Y 2011 The International Society for Optical Engineering San Francisco, USA, Feb ruary 2-5, 2011 p7918
    [3] Grunnet-Jepsen A, Swaminathan K, Keselman L M 2017 US Patent 14998253
    [4] Moench H, Gronenborn S, Gu X, Gudde R, Herper M, Kolb J, Miller M, Smeets M, Weigl A 2017 SPIE Photonics West OPTO San Francisco, USA, February 2-7, 2017 p7
    [5] Wang T K, Su C Y 2017 US Patent 14841569
    [6] Barve A V, Yuen A 2017 US Patent 15638813
    [7] Zhou D L, Seurin J F, Xu G Y, Miglo A, Li D Z, Wang Q,Sundaresh M, Wilton S, Matheussen J, Ghosh C 2014 SPIE Photonics West OPTO San Francisco, USA, February 2-7,2014 p14
    [8] Graham L A, Johnson R H, Guenter J K 2016 US Patent14589392
    [9] Larsson A G, Haglund E P, Haglund E, Roelkens G,Gustavsson J, Baets R, Kumasi S 2017 Optical Fiber Communi cations Conference and Exhibition Los Angeles, USA, March19-23, 2017 pW3E6
    [10] Pusch T, Lindemann M, Gerhardt N C, Hofmann M R,Michalzik R 2015 Electron. Lett. 51 1600
    [11] Gadallah A 2011 IEEE Photon. Technol. Lett. 23 1040
    [12] Haglund E, Gustavsson J S, Sorin W V, Bengtsson J, Fattal D, Haglund A, Tan M, Larsson A 2017 Proc. SPIE 10113101130B
    [13] Wang Z F, Ning Y Q, Li T, Cui J J, Zhang Y, Liu G G,Zhang X, Qin L, Liu Y, Wang L J 2009 IEEE Photon.Technol. Lett. 21 239
    [14] Li T, Ning Y Q, Sun Y F, Cui J J, Qin L, Yan C L, Zhang Y,Peng B, Liu G G, Liu Y, Wang L J 2007 Chin. Opt. Lett. 5S156
    [15] Li T, Ning Y Q, Sun Y F, Cui J, Hao E J, Qin L, Tao G T,Liu Y J, Wang L J, Cui D F 2007 Chin. J. Las. 34 641(in Chinese)[李特,宁永强,孙艳芳,崔锦江,郝二娟,秦莉,套格套,刘云,王立军,崔大复2007中国激光34 641]
    [16] Lu Z C, Wang Q, Yao S, Zhou G Z, Yu H Y, Li Y, Lang L G, Lan T, Zhang W J, Liang C Y, Zhang Y, Zhao C F, Jia H F, Wang G H, Wang Z Y 2018 Acta Opt. Sin. 38 514001(in Chinese)[吕朝晨,王青,尧舜,周广正,于洪岩,李颖,郎陆广,兰天,张文甲,梁辰余,张杨,赵春风,贾海峰,王光辉,王智勇2018光学学报38 514001]
    [17] Zhou G Z, Yao S, Yu H Y, Lii Z C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phys. Sin. 67 104205(in Chinese)[周广正,尧舜,于洪岩,吕朝晨,王青,周天宝,李颖,兰天,夏宇,郎陆广,程立文,董国亮,康联鸿,王智勇2018物理学报67104205]
    [18] Yu H Y, Yao S, Zhou G Z, Wang Q, Lan T, Lu Z C, Li Y,Lang L G, Zhou T B, Cheng L W 2018 Opt. Quantum Electron. 50 171
    [19] Guo X, Dong J, He X Y, Hu S, He Y, Lu B S, Li C 2017 J.Appl. Phys. 121 133105
    [20] Adachi S 1998 J. Appl. Phys. 58 R1
    [21] Pearsall T P 1982 GaInAsP Alloy Semiconductors(New York:Wiley)p3
    [22] Chuang S L 2009 Physics of Photonic Devices(New York:Wiley)pp45-52
    [23] Surhone L M, Timpledon M T, Marseken S F 2010 Thin-film Optics(Hong Kong:Betascript)pp146-155