某涡桨发动机隔振安装系统弹性参数优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Elastic Parameter of Vibration Isolation System for Turboprop Engine
  • 作者:陈春兰 ; 苏尔敦
  • 英文作者:CHEN Chun-lan;SU Er-dun;Laboratory of Aeronautical Acoustics and Dynamics, Aircraft Strength Research Institute of China;
  • 关键词:发动机安装 ; 隔振 ; 振动解耦
  • 英文关键词:engine mount;;vibration isolation;;vibration decoupling
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:中国飞机强度研究所航空噪声与振动强度航空科技重点实验室;
  • 出版日期:2019-05-25
  • 出版单位:装备环境工程
  • 年:2019
  • 期:v.16
  • 语种:中文;
  • 页:JSCX201905001
  • 页数:5
  • CN:05
  • ISSN:50-1170/X
  • 分类号:6-10
摘要
目的降低某型涡桨发动机安装系统中存在的振动耦合。方法在ADAMS中建立该涡桨发动机安装系统的动力学模型,以发动机安装系统模态频率及侧向、垂向模态对应的振动解耦率为优化条件,通过ADAMS/insight模块对该动力学模型进行刚度优化。结果通过优化,发动机安装系统侧向模态频率为8.03 Hz,垂向模态频率为28.23Hz,满足隔振要求。侧向、偏航、俯仰模态实现了振动解耦,解耦率均在97%以上。由于主隔振器结构特点,垂向、航向、滚转模态仍存在振动耦合,可考虑改变主隔振器结构以降低该振动耦合。结论所述方法可提高涡桨发动机安装系统的振动解耦率,降低安装系统的刚度设计难度,进而提高涡桨发动机安装系统的隔振效率。
        Objective To reduce the vibration coupling existing in a turboprop engine mounting system. Methods A dynamic model of turboprop engine mounting system was built in ADAMS. With the vibration decoupling rate corresponding to the modal frequency, lateral and vertical modes of the engine mounting system as optimization conditions, the dynamic model was optimized by ADAMS/insight. Results The lateral mode frequency and vertical mode frequency of the engine installation system were 8.03 Hz and 28.23 Hz respectively, meeting the isolation requirements. The lateral, pitch and yaw modes all achieved vibration decoupling with decoupling rate higher than 97%. Due to structural characteristics of the main isolator, vertical, heading,roll mode vibration coupling still exists. It might be considered to alter the primary isolator structure to reduce this vibrational coupling. Conclusion The method can improve the vibration decoupling rate of turboprop engine mounting system, reduce the difficulty of rigidity design of the mounting system, and then improve the isolation efficiency of the turboprop engine mounting system.
引文
[1]施荣明.发动机安装结构动力学设计[J].应用力学学报,2001,18(增刊):11-15.
    [2]赵建才,李堑,姚振强,等.车辆动力总成悬置系统的能量法解耦仿真分析[J].上海交通大学学报,2008,42(6):878-881.
    [3]童炜,陈建斌,宋晓琳.基于ADAMS的发动机悬置系统多目标优化[J].汽车工程,2011,33(11):971-975.
    [4]王显会,李守成,黄鹏程,等.轿车发动机动力总成悬置系统优化研究[J].南京理工大学学报,2006,30(1):17-20.
    [5]吕振华,范让林.动力总成-悬置系统振动解藕设计方法[J].机械工程学报,2005,41(4):49-54.
    [6]EUGENE I R.被动隔振[M].武汉:海军工程大学出版社,2004.
    [7]陈永辉,陈春兰,苏尔敦,等.航空发动机安装系统动力学设计技术研究[J].计算机仿真,2018(6):23-27.
    [8]方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社,2004.
    [9]HRYCKO G O.Design of the Low Vibration Turboprop Powerplant Suspension System for the DASH7 Aircraft[C]//Business Aircraft Meeting&Exposition.Wichita,Kansas,1983.
    [10]李星.车用发动机隔振的仿真研究[D].沈阳:沈阳理工大学,2011.