基于狄拉克半金属宽带的可调谐太赫兹偏振器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Broadband Tunable Terahertz Polarizers Based on Dirac Semimetal
  • 作者:田元仕 ; 郭晓涵 ; 戴林林 ; 张会云 ; 张玉萍
  • 英文作者:Tian Yuanshi;Guo Xiaohan;Dai Linlin;Zhang Huiyun;Zhang Yuping;College of Electronic and Information Engineering, Shandong University of Science and Technology,Qingdao Key Laboratory of Terahertz Technology;
  • 关键词:太赫兹技术 ; 超材料 ; 偏振 ; 狄拉克半金属
  • 英文关键词:terahertz technology;;metamaterial;;polarization;;Dirac semimetal
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:山东科技大学电子信息工程学院青岛市太赫兹技术重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.510
  • 基金:国家自然科学基金(61875106,61775123);; 山东省研究生导师指导能力提升项目(SDYY17030)
  • 语种:中文;
  • 页:JJZZ201906033
  • 页数:8
  • CN:06
  • ISSN:31-1339/TN
  • 分类号:303-310
摘要
提出了一种基于狄拉克半金属超材料的双开口环结构的宽带偏振器,研究了狄拉克半金属费米能级以及中间介质厚度对偏振转换性能的影响。结果表明:当中间介质厚度为22μm,费米能级为70 meV时,在1.44 THz和1.95 THz两个谐振频率处,偏振转换效率为100%;当中间介质厚度为22μm时,随着狄拉克半金属费米能级从64 meV增加到70 meV,高低两个谐振峰均产生蓝移;当狄拉克半金属费米能级为70 meV时,随着基底介质厚度从19μm增加到22μm,低频处的谐振峰未移动,高频率点处的谐振峰红移。
        In this study, we propose a broadband polarizer based on the "double-split ring" structure of a Dirac semimetal metamaterial. Further, we investigate the influences of the Dirac semimetal Fermi level and the intermediate dielectric thickness on the polarization conversion performance. The results show that the polarization conversion efficiency is 100% at two resonance frequencies of 1.44 THz and 1.95 THz for an intermediate dielectric thickness of 22 μm and a Fermi level of 70 meV. In addition, For a 22 μm thick intermediate dielectric, the two resonant peaks at high and low frequencies show a blue shift as the Dirac semimetal Fermi level increases from 64 meV to 70 meV. Moreover, for a Dirac semimetal Fermi level of 70 meV, as the substrate dielectric thickness increases from 19 μm to 22 μm, the resonant peak at low frequency does not shift, whereas that at high frequency exhibits a red shift.
引文
[1] Saleh B E A,Teich M C.Fundamentals of photonics[M].2nd ed.Hoboken,New Jersey:John Wiley & Sons,Inc.,2007.
    [2] Rutz F,Hasek T,Koch M,et al.Terahertz birefringence of liquid crystal polymers[J].Applied Physics Letters,2006,89(22):221911.
    [3] Chen S Q,Liu W W,Li Z C,et al.Polarization state manipulation of electromagnetic waves with metamaterials and its applications in nanophotonics[J].Metamaterials:Devices and Applications,2017:217.
    [4] Grady N K,Heyes J E,Chowdhury D R,et al.Terahertz metamaterials for linear polarization conversion and anomalous refraction[J].Science,2013,340(6138):1304-1307.
    [5] Chiang Y J,Yen T J.A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness,an excellent conversion ratio,and enhanced transmission[J].Applied Physics Letters,2013,102(1):011129.
    [6] Lévesque Q,Makhsiyan M,Bouchon P,et al.Plasmonic planar antenna for wideband and efficient linear polarization conversion[J].Applied Physics Letters,2014,104(11):111105.
    [7] Cong L Q,Cao W,Tian Z,et al.Manipulating polarization states of terahertz radiation using metamaterials[J].New Journal of Physics,2012,14(11):115013.
    [8] Cong L Q,Xu N N,Gu J Q,et al.Highly flexible broadband terahertz metamaterial quarter-wave plate[J].Laser & Photonics Reviews,2014,8(4):626-632.
    [9] Cong L Q,Xu N N,Han J G,et al.A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control[J].Advanced Materials,2015,27(42):6630-6636.
    [10] Zhou L,Zhao G Z,Li Y H.Broadband terahertz polarization converter based on L-shaped metamaterial[J].Laser & Optoelectronics Progress,2018,55(4):041602.周璐,赵国忠,李永花.基于L形超材料的太赫兹宽带偏振转换器[J].激光与光电子学进展,2018,55(4):041602.
    [11] Li Y H,Zhou L,Zhao G Z.Terahertz broadband polarization converter based on anisotropic metasurface[J].Chinese Journal of Lasers,2018,45(3):0314001.李永花,周璐,赵国忠.基于各向异性超表面的太赫兹宽带偏振转换器[J].中国激光,2018,45(3):0314001.
    [12] Khatua S,Chang W S,Swanglap P,et al.Active modulation of nanorod plasmons[J].Nano Letters,2011,11(9):3797-3802.
    [13] Shen N H,Massaouti M,Gokkavas M,et al.Optically implemented broadband blueshift switch in the terahertz regime[J].Physical Review Letters,2011,106(3):037403.
    [14] Zheludev N I,Plum E.Reconfigurable nanomechanical photonic metamaterials[J].Nature Nanotechnology,2016,11(1):16-22.
    [15] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [16] Emani N K,Chung T F,Ni X J,et al.Electrically tunable damping of plasmonic resonances with graphene[J].Nano Letters,2012,12(10):5202-5206.
    [17] Valmorra F,Scalari G,Maissen C,et al.Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J].Nano Letters,2013,13(7):3193-3198.
    [18] Cheng H,Chen S Q,Yu P,et al.Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial[J].Applied Physics Letters,2013,103(22):223102.
    [19] Cheng H,Chen S Q,Yu P,et al.Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses[J].Optics Letters,2013,38(9):1567-1569.
    [20] Li Y Z,Zhao J M,Lin H,et al.Tunable circular polarization selective surfaces for low-THz applications using patterned graphene[J].Optics Express,2015,23(6):7227-7236.
    [21] Yang C,Luo Y,Guo J X,et al.Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene[J].Optics Express,2016,24(15):16913-16922.
    [22] Ding J,Arigong B,Ren H,et al.Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array[J].Plasmonics,2015,10(2):351-356.
    [23] Guo T J,Argyropoulos C.Broadband polarizers based on graphene metasurfaces[J].Optics Letters,2016,41(23):5592-5595.
    [24] Gao X,Yang W L,Cao W P,et al.Bandwidth broadening of a graphene-based circular polarization converter by phase compensation[J].Optics Express,2017,25(20):23945-23954.
    [25] Liu Z K,Zhou B,Zhang Y,et al.Discovery of a three-dimensional topological Dirac semimetal,Na3Bi[J].Science,2014,343(6173):864-867.
    [26] Liu Z K,Jiang J,Zhou B,et al.A stable three-dimensional topological Dirac semimetal Cd3As2[J].Nature Materials,2014,13(7):677-681.
    [27] Chen H,Zhang H Y,Liu M D,et al.Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals[J].Optical Materials Express,2017,7(9):3397-3407.
    [28] Chen H,Zhang H Y,Guo X H,et al.Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial[J].Applied Optics,2018,57(4):752-756.
    [29] Dai L L,Zhang Y P,Guo X H,et al.Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals[J].Optical Materials Express,2018,8(10):3238-3249.
    [30] Liu G D,Zhai X,Meng H Y,et al.Dirac semimetals based tunable narrowband absorber at terahertz frequencies[J].Optics Express,2018,26(9):11471-11480.
    [31] Su Y,Lin Q,Zhai X,et al.Controlling terahertz surface plasmon polaritons in Dirac semimetal sheets[J].Optical Materials Express,2018 8(4):884-892.
    [32] Rodrigo S G.Terahertz gas sensor based on absorption-induced transparency[J].EPJ Applied Metamaterials,2016,3:11.
    [33] Hejase J A,Paladhi P R,Chahal P P.Terahertz characterization of dielectric substrates for component design and nondestructive evaluation of packages[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2011,1(11):1685-1694.