金属增材制造技术的关键因素及发展方向
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Key factors and developmental directions with regard to metal additive manufacturing
  • 作者:李昂 ; 刘雪峰 ; 俞波 ; 尹宝强
  • 英文作者:LI Ang;LIU Xue-feng;YU Bo;YIN Bao-qiang;School of Materials Science and Engineering,University of Science and Technology Beijing;Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,University of Science and Technology Beijing;Key Laboratory for Advanced Materials Processing of Ministry of Education,University of Science and Technology Beijing;
  • 关键词:金属增材制造技术 ; 金属增材制造设备 ; 金属增材制造材料 ; 金属增材制造工艺 ; 关键因素 ; 发展方向
  • 英文关键词:metal additive manufacturing technology;;metal additive manufacturing equipment;;metal additive manufacturing material;;metal additive manufacturing process;;critical factor;;development direction
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学材料科学与工程学院;北京科技大学现代交通金属材料与加工技术北京实验室;北京科技大学材料先进制备技术教育部重点实验室;
  • 出版日期:2019-01-25 08:53
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.298
  • 基金:国家高技术研究发展计划(863计划)资助项目(2015AA034304)
  • 语种:中文;
  • 页:BJKD201902002
  • 页数:15
  • CN:02
  • ISSN:10-1297/TF
  • 分类号:20-34
摘要
金属增材制造技术是一种短流程、近终形的新型材料成形技术.在金属增材制造技术中,设备是载体,材料是关键,工艺是基础,三者是影响金属增材制造技术发展的关键因素.本文通过对具有代表性的金属增材制造技术的特点进行总结,分析了设备、材料和工艺之间的关系以及三者在金属增材制造技术中的重要作用;综述了金属增材制造设备的原料供给系统、成形系统和控制系统的研究现状;总结了金属增材制造材料中钛合金、镍合金、铝合金和钢铁材料的典型组织特点和力学性能;论述了金属增材制造工艺参数对残余应力、孔洞、精度和组织的影响;指出了目前金属增材制造技术在设备方面存在设备成本高、产品成形尺寸受限、成形效率低等问题,在材料方面存在生产成本高、适用性差等问题,在工艺方面存在参数匹配困难、热积累严重等问题;从降低设备和材料成本、扩大产品成形尺寸范围、提高产品精度和成形效率、拓展材料种类和适用范围、减少工艺参数匹配难度、提升产品质量及综合性能、开发金属增材制造新技术方面展望了金属增材制造技术的发展方向.
        Metal additive manufacturing is a new type of material-forming technology characterized by its short process and near net shape. Equipment,material and process are critical factors which serve as the supporter,key,and foundation respectively in terms of the development of this technology. In this paper,the characteristics of the equipment,material,and process of the different representative technologies were summarized. The relations among metal additive manufacturing equipment,manufacturing material,and manufacturing process as well as their roles in the metal additive manufacturing technology were analyzed. The research status of the raw material supply system,forming system,and control system were reviewed. The typical microstructure and mechanical properties of metal additive manufacturing materials,such as titanium alloy,nickel alloy,aluminum alloy,and steel,were summarized. The effects of the manufacturing process parameters on residual stress,porosity,accuracy,and microstructure were discussed. Problems associated with the manufacturing equipment,such as high cost,limited forming size,and low forming efficiency were discussed along with the problems associated with the material,such as high production cost and poor applicability. Furthermore,problems associated with the metal additive manufacturing process,such as difficult matching of process parameters and severe thermal accumulation,were elaborated as well. Future developmental goals in metal additive manufacturing include:( a) reducing the cost of manufacturing equipment and mate-rial,( b) expanding the range of product forming size,( c) improving the product printing accuracy and forming efficiency,( d) expanding the types and application scope of metal additive manufacturing material,( e) reducing the difficulty in the matching of process parameters,( f) improving product quality and comprehensive performance,and( g) developing new types of metal additive manufacturing technologies.
引文
[1] Mohan Pandey P,Venkata Reddy N,Dhande S G. Slicing procedures in layered manufacturing:a review. Rapid Prototyping J,2003,9(5):274
    [2] Qi L H,Chao Y P,Luo J,et al. A novel selection method of scanning step for fabricating metal components based on microdroplet deposition manufacture. Int J Mach Tools Manuf,2012,56:50
    [3] Gu D D,Meiners W,Wissenbach K,et al. Laser additive manufacturing of metallic components:materials,processes and mechanisms. Int Mater Rev,2012,57(3):133
    [4] Frazier W E. Metal additive manufacturing:a review. J Mater Eng Perform,2014,23(6):1917
    [5] Pinkerton A J. Lasers in additive manufacturing. Opt Laser Technol,2016,78:25
    [6] Santos E C,Shiomi M,Osakada K,et al. Rapid manufacturing of metal components by laser forming. Int J Mach Tools Manuf,2006,46(12-13):1459
    [7] Zinovieva O,Zinoviev A,Ploshikhin V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput Mater Sci,2018,141:207
    [8] Sames W J,List F A,Pannala S,et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev,2016,61(5):315
    [9] Sing S L,An J,Yeong W Y,et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants:a review on processes,materials and designs. J Orthop Res,2016,34(3):369
    [10] Deckard C R. Method and Apparatus for Producing Parts by Selective Sintering:US Patent,US005316580A. 1994-05--31
    [11] Kruth J P,Mercelis P,Van Vaerenbergh J,et al. Binding mechanisms in selective laser sintering and selective laser melting.Rapid Prototyping J,2005,11(1):26
    [12] Kruth J P,Wang X,Laoui T,et al. Lasers and materials in selective laser sintering. Assembly Autom,2003,23(4):357
    [13] Orme M. A novel technique of rapid solidification net-form materials synthesis. J Mater Eng Perform,1993,2(3):399
    [14] Fang M,Chandra S,Park C B. Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyping J,2008,14(1):44
    [15] Liu Q B,Orme M. High precision solder droplet printing technology and the state-of-the-art. J Mater Process Technol,2001,115(3):271
    [16] Meiners W,Wissenbach K D,Gasser A D. Shaped Body especially Prototype or Replacement Part Production:DE Patent,DE19649865C1. 1998-02-12
    [17] Sato Y,Tsukamoto M,Yamashita Y. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting. Appl Phys B,2015,119(3):545
    [18] Jeantette F P,Keicher D M,Romero J A,et al. Method and System for Producing Complex-shape Objects:US Patent,6046426. 2000-04--04
    [19] Liu W P,DuPont J N. Fabrication of functionally graded Ti C/Ti composites by laser engineered net shaping. Scripta Mater,2003,48(9):1337
    [20] Spencer J D,Dickens P M,Wykes C M. Rapid prototyping of metal parts by three-dimensional welding. Proc Instn Mech Eng Part B J Eng Manuf,1998,212(3):175
    [21] Andersson L E,Larsson M. Device and Arrangement for Producing A Three-dimensional Object:US Patent,7537722B2. 2009-05--26
    [22] Zh M F,Lutzmann S. Modelling and simulation of electron beam melting. Prod Eng,2010,4(1):15
    [23] Wu G H,Langrana N A,Sadanji R,et al. Solid freeform fabrication of metal components using fused deposition of metals. Mater Des,2002,23(1):97
    [24] Mireles J,Espalin D,Roberson D,et al. Fused deposition modeling of metals//Proceedings of the Solid Freeform Fabrication Symposium. Austin,2012:836
    [25] Taminger K M B,Hafley Robert A. Characterization of 2219 aluminum produced by electron beam freeform fabrication//Proceeding of the 13th Solid Freeform Fabrication Symposium. Austin,2002:482
    [26] Chen T,Pang S Y,Tang Q,et al. Evaporation ripped metallurgical pore in electron beam freeform fabrication of Ti--6-Al-4-V. Mater Manuf Processes,2016,31(15):1995
    [27] Yan W Z,Yue Z F,Zhang J Z. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication. Mater Des,2016,89:1205
    [28] Yang Y Q,Ye Z H,Wang D,et al. Feasibility analysis of domestic industrialization of 3D printing equipment. Adv Mater Ind,2013(8):13(杨永强,叶梓恒,王迪,等. 3D打印设备国内产业化可行性分析.新材料产业,2013(8):13)
    [29] Wang H M. Materials’fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica et Astronautica Sinica,2014,35(10):2690(王华明.高性能大型金属构件激光增材制造:若干材料基础问题.航空学报,2014,35(10):2690)
    [30] Huang W D. Research progress of 3D printing technology materials. J New Industrialization,2016,6(3):53(黄卫东.材料3D打印技术的研究进展.新型工业化,2016,6(3):53)
    [31] Elahinia M,Moghaddam N S,Andani M T,et al. Fabrication of Ni Ti through additive manufacturing:a review. Prog Mater Sci,2016,83:630
    [32] Karunakaran K P,Bernard A,Suryakumar S,et al. Rapid manufacturing of metallic objects. Rapid Prototyping J,2012,18(4):264
    [33] Seifi M,Salem A,Beuth J,et al. Overview of materials qualification needs for metal additive manufacturing. JOM,2016,68(3):747
    [34] Xiong J,Zhang G J. Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol,2014,214(4):962
    [35] Xu L F. Foundational Research on Uniform Droplets Spraying Micro-fabrication Technology[Dissertation]. Xi’an:Northwestern Polytechnical University,2005(徐林峰.均匀液滴喷射微制造技术基础研究[学位论文].西安:西北工业大学,2005)
    [36] Xiong J. Forming Characteristics in Multi-layer Single-head GMA Additive Manufacturing and Control for Deposition Dimension[Dissertation]. Harbin:Harbin Institute of Technology,2014(熊俊.多层单道GMA增材制造成形特性及熔敷尺寸控制[学位论文].哈尔滨:哈尔滨工业大学,2014)
    [37] He L. The Study on Semi-solid Metal Extrusion Deposition Molding Technology Based on Five-axis Linkage CNC Workbench[Dissertation]. Wuhan:Huazhong University of Science and Technology,2015(何龙.基于五轴联动的半固态金属挤出沉积成型技术研究[学位论文].武汉:华中科技大学,2015)
    [38] Wang B. Novel Equipment Development and Process Research on Selective Laser Melting[Dissertation]. Changsha:Hunan University,2016(王兵.新型选区激光熔化设备开发与工艺研究[学位论文].长沙:湖南大学,2016)
    [39] Chen G X,Zeng X Y. Design on SLM powder coating device.Manuf Technol Mach Tool,2010(3):57(陈光霞,曾晓雁.选择性激光熔化激光快速成型铺粉装置设计.制造技术与机床,2010(3):57)
    [40] Cui Y Y. Study on the Design of Powder Coating System of Selective Laser Melting[Dissertation]. Nanjing:Nanjing University of Science and Technology,2016(崔祎赟.激光选区熔化铺粉系统设计研究[学位论文].南京:南京理工大学,2016)
    [41] Mahesh M,Wong Y S,Fuh J Y H,et al. A six-sigma approach for benchmarking of RP&M processes. Int J Adv Manuf Technol,2006,31(3-4):374
    [42] Wen S Y,Shin Y C,Murthy J Y,et al. Modeling of coaxial powder flow for the laser direct deposition process. Int J Heat Mass Transfer,2009,52(25-26):5867
    [43] Tabernero I,Lamikiz A,Ukar E,et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J Mater Process Technol,2010,210(15):2125
    [44] Tian F J,Han H. Design of coaxial powder feeding system for FGM laser rapid shaping. Trans Shenyang Ligong Univ,2008,27(6):48(田凤杰,韩辉.功能梯度材料激光快速成形同轴送粉系统设计.沈阳理工大学学报,2008,27(6):48)
    [45] Tseng A A,Lee M H,Zhao B. Design and operation of a droplet deposition system for freeform fabrication of metal parts. J Eng Mater Technol-Trans ASME,2001,123(1):74
    [46] Zhong S Y. Research on Uniform Metal Droplet Generation and Surface Topography Control in Metal Micro-droplet Deposition Manufacture[Dissertation]. Xi’an:Northwestern Polytechnical University,2016(钟宋义.均匀金属微滴气动按需喷射行为及表面形貌控制研究[学位论文].西安:西北工业大学,2016)
    [47] Zhong S Y,Qi L H,Luo J,et al. Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J Mater Process Technol,2014,214(12):3089
    [48] Mumtaz K A,Hopkinson N. Selective laser melting of thin wall parts using pulse shaping. J Mater Process Technol,2010,210(2):279
    [49] Baek G Y,Lee K Y,Park S H,et al. Effects of substrate preheating during direct energy deposition on microstructure,hardness,tensile strength,and notch toughness. Met Mater Int,2017,23(6):1204
    [50] Yan H F. Key Techniques Research on SLM 3D Printing Equipment for Dental Application[Dissertation]. Beijing:Beijing University of Technology,2016(晏恒峰.牙科激光选区熔化3D打印设备关键技术研究[学位论文].北京:北京工业大学,2016)
    [51] Schleifenbaum H,Meiners W,Wissenbach K,et al. Individualized production by means of high power selective laser melting.CIRP J Manuf Sci Technol,2010,2(3):161
    [52] Hofman J T,Pathiraj B,Van Dijk J,et al. A camera based feedback control strategy for the laser cladding process. J Mater Process Technol,2012,212(11):2455
    [53] Hu D M,Kovacevic R. Sensing,modeling and control for laserbased additive manufacturing. Int J Mach Tools Manuf,2003,43(1):51
    [54] Craeghs T,Clijsters S,Yasa E,et al. Online quality control of selective laser melting//Proceedings of the Solid Freeform Fabrication Symposium. Austin,2011:212
    [55] Herali'c A,Christiansson A K,Ottosson M,et al. Increased stability in laser metal wire deposition through feedback from optical measurements. Opt Lasers Eng,2010,48(4):478
    [56] Bi G J,Schürmann B,Gasser A,et al. Development and qualification of a novel laser-cladding head with integrated sensors. Int J Mach Tools Manuf,2007,47(3-4):555
    [57] Hand D P,Fox M D T,Haran F M,et al. Optical focus control system for laser welding and direct casting. Opt Lasers Eng,2000,34(4-6):415
    [58] Song L J,Mazumder J. Feedback control of melt pool temperature during laser cladding process. IEEE Trans Control Syst Technol,2011,19(6):1349
    [59] Zhang X J,Tang S Y,Zhao H Y,et al. Research status and key technologies of 3D printing. J Mater Eng,2016,44(2):122(张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术.材料工程,2016,44(2):122)
    [60] Tang Y,Loh H T,Wong Y S,et al. Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts. J Mater Process Technol,2003,140(1-3):368
    [61] Yan C Z,Shi Y S,Yang J S,et al. Preparation and selective laser sintering of nylon-12 coated metal powders and post processing. J Mater Process Technol,2009,209(17):5785
    [62] Ting J,Peretti M W,Eisen W B. The effect of wake-closure phenomenon on gas atomization performance. Mater Sci Eng A,2002,326(1):110
    [63] Zhong S Y,Qi L H,Tang Y,et al. Development and experimental research of aluminium alloy droplet generator based on mechanical vibration. Procedia Eng,2014,81:1583
    [64] Su X B,Yang Y Q,Xiao D M,et al. An investigation into direct fabrication of fine-structured components by selective laser melting. Int J Adv Manuf Technol,2013,64(9-12):1231
    [65] Moat R J,Pinkerton A J,Li L,et al. Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A,2011,528(6):2288
    [66] Baufeld B,Brandl E,Van der Biest O. Wire based additive layer manufacturing:comparison of microstructure and mechanical properties of Ti--6Al--4V components fabricated by laser-beam deposition and shaped metal deposition. J Mater Process Technol,2011,211(6):1146
    [67] Pi G,Zhang A F,Zhu G X,et al. Research on the forming process of three-dimensional metal parts fabricated by laser direct metal forming. Int J Adv Manuf Technol,2011,57(9-12):841
    [68] Amano R S,Rohatgi P K. Laser engineered net shaping process for SAE 4140 low alloy steel. Mater Sci Eng A,2011,528(22-23):6680
    [69] Wang F D,Williams S,Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol,2011,57(5-8):597
    [70] Wang H J,Jiang W H,Ouyang J H,et al. Rapid prototyping of4043 Al-alloy parts by VP-GTAW. J Mater Process Technol,2004,148(1):93
    [71] Haden C V,Zeng G,Carter F M,et al. Wire and arc additive manufactured steel:tensile and wear properties. Addit Manuf,2017,16:115
    [72] Li X,Wang C T,Zhang W G,et al. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett,2009,63(3-4):403
    [73] K9rner C. Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev,2016,61(5):361
    [74] Lodes M A,Guschlbauer R,K9rner C. Process development for the manufacturing of 99. 94%pure copper via selective electron beam melting. Mater Lett,2015,143:298
    [75] Rice C S,Mendez P F,Brown S B. Metal solid freeform fabrication using semi-solid slurries. JOM,2000,52(12):31
    [76] Wanjara P,Brochu M,Jahazi M. Electron beam freeforming of stainless steel using solid wire feed. Mater Des,2007,28(8):2278
    [77] Zhao X H,Zuo Z B,Han Z Y,et al. A review on powder titanium alloy 3D printing technology. Mater Rev,2016,30(12):121(赵霄昊,左振博,韩志宇,等.粉末钛合金3D打印技术研究进展.材料导报,2016,30(12):121)
    [78] Murr L E,Quinones S A,Gaytan S M,et al. Microstructure and mechanical behavior of Ti--6Al--4V produced by rapid-layer manufacturing,for biomedical applications. J Mech Behav Biomed Mater,2009,2(1):20
    [79] Rafi H K,Karthik N V,Gong H J,et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform,2013,22(12):3872
    [80] Facchini L,Magalini E,Robotti P,et al. Ductility of a Ti-6Al--4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J,2010,16(6):450
    [81] Hrabe N,Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy(Ti-6Al--4V)fabricated using electron beam melting(EBM),part 1:distance from build plate and part size. Mater Sci Eng A,2013,573:264
    [82] Hrabe N,Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy(Ti-6Al-4V)fabricated using electron beam melting(EBM),Part 2:energy input,orientation,and location. Mater Sci Eng A,2013,573:271
    [83] Edwards P,O'Conner A,Ramulu M. Electron beam additive manufacturing of titanium components:properties and performance. J Manuf Sci Eng,2013,135(6):061016-1
    [84] Qiu C L,Ravi G A,Dance C,et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J Alloys Compd,2015,629:351
    [85] Carroll B E,Palmer T A,Beese A M. Anisotropic tensile behavior of Ti-6Al--4V components fabricated with directed energy deposition additive manufacturing. Acta Mater,2015,87:309
    [86] Choi J P,Shin G H,Yang S S,et al. Densification and microstructural investigation of Inconel 718 parts fabricated by selective laser melting. Powder Technol,2017,310:60
    [87] Zhong C L,Gasser A,Kittel J. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition. J Laser Appl,2016,28(2):022010
    [88] Wang X Q,Gong X B,Chou K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc Inst Mech Eng Part B J Eng Manuf,2017,231(11):1890
    [89] Matz J E,Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication. Metall Mater Trans A,2002,33(8):2559
    [90] Zhong C L,Gasser A,Kittel J,et al. Study of process window development for high deposition-rate laser material deposition by using mixed processing parameters. J Laser Appl,2015,27(3):032008-1
    [91] Baufeld B. Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition(SMD). J Mater Eng Perform,2012,21(7):1416
    [92] Zhang H,Zhu H H,Qi T,et al. Selective laser melting of high strength Al-Cu-Mg alloys:processing,microstructure and mechanical properties. Mater Sci Eng A,2016,656:47
    [93] Thijs L,Kempen K,Kruth J P,et al. Fine-structured aluminium products with controllable texture by selective laser melting of prealloyed Al Si10Mg powder. Acta Mater,2013,61(5):1809
    [94] Zhao X M,Qi Y H,Yu Q C,et al. Study on microstructure and mechanical properties of Al Si10Mg alloy produced by 3D printing. Foundry Technol,2016,37(11):2402(赵晓明,齐元昊,于全成,等. Al Si10Mg铝合金3D打印组织与性能研究.铸造技术,2016,37(11):2402)
    [95] Zuo H S. Research on Microstructural Evolution of Uniform Molten Aluminum Droplets during Controlled Deposition Fabrication[Dissertation]. Xi’an:Northwestern Polytechnical University,2015(左寒松.均匀铝微滴沉积成形微观组织演化机理研究[学位论文].西安:西北工业大学,2015)
    [96] Simonelli M,Tuck C,Aboulkhair N T,et al. A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel,Al--Si10-Mg,and Ti--6Al-4V. Metall Mater Trans A,2015,46(9):3842
    [97] Yakout M,Elbestawi M A,Veldhuis S C. On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol,2018,95(5-8):1953
    [98] Liverani E,Toschi S,Ceschini L,et al. Effect of selective laser melting(SLM)process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol,2017,249:255
    [99] Chen X H,Li J,Cheng X,et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Mater Sci Eng A,2017,703:567
    [100] Alsalla H H,Smith C,Hao L. Effect of build orientation on the surface quality,microstructure and mechanical properties of selective laser melting 316L stainless steel. Rapid Prototyping J,2018,24(1):9
    [101] Chen X H,Li J,Cheng X,et al. Effect of heat treatment on microstructure,mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater Sci Eng A,2018,715:307
    [102] Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol,2018,34(8):895
    [103] Yadollahi A,Shamsaei N,Thompson S M,et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A,2015,644:171
    [104] Agarwala M,Bourell D,Beaman J,et al. Direct selective laser sintering of metals. Rapid Prototyping J,1995,1(1):26
    [105] Zhu H H,Lu L,Fuh J Y H. Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol,2003,140(1-3):314
    [106] Gu D D,Hagedorn Y C,Meiners W,et al. Densification behavior,microstructure evolution,and wear performance of selective laser melting processed commercially pure titanium. Acta Mater,2012,60(9):3849
    [107] Mumtaz K,Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J,2009,15(2):96
    [108] Ye Z H. The Personalized Design and Process Research of Selective Laser Melting Manufacturing of Ti6Al4V Tibial Implant[Dissertation]. Guangzhou:South China University of Technology,2014(叶梓恒. Ti6Al4V胫骨植入体个性化设计及其激光选区熔化制造工艺研究[学位论文].广州:华南理工大学,2014)
    [109] Aiyiti W,Zhao W H,Tang Y P,et al. Study on the process parameters of MPAW-based rapid prototyping. Key Eng Mater,2007,353-358:1931
    [110] Horii T,Kirihara S,Miyamoto Y. Freeform fabrication of Ti-Al alloys by 3D micro-welding. Intermetallics,2008,16(11-12):1245
    [111] Herzog D,Seyda V,Wycisk E,et al. Additive manufacturing of metals. Acta Mater,2016,117:371
    [112] Guo C,Lin F,Ge W J. Study on the fabrication process of316L stainless steel via electron beam selective melting. J Mech Eng,2014,50(21):152(郭超,林峰,葛文君.电子束选区熔化成形316L不锈钢的工艺研究.机械工程学报,2014,50(21):152)
    [113] Chen B B. An Investigation of Heat Transfer and Fluid Flow Behaviors in Electron Beam Freeform Fabrication[Dissertation].Wuhan:Huazhong University of Science and Technology,2013(陈彬斌.电子束熔丝沉积快速成形传热与流动行为研究[学位论文].武汉:华中科技大学,2013)
    [114] Nickel A H,Barnett D M,Prinz F B. Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng A,2001,317(1-2):59
    [115] Labudovic M,Hu D,Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. J Mater Sci,2003,38(1):35
    [116] Abe F,Osakada K,Shiomi M,et al. The manufacturing of hard tools from metallic powders by selective laser melting. J Mater Process Technol,2001,111(1-3):210
    [117] Wan H L,Wang Q Z,Lin H X. The effect of lack-of-fusion porosity on fatigue behavior of additive manufactured titanium alloy. Key Eng Mater,2017,723:44
    [118] Chao Y P,Qi L H,Zuo H S,et al. Remelting and bonding of deposited aluminum alloy droplets under different droplet and substrate temperatures in metal droplet deposition manufacture.Int J Mach Tools Manuf,2013,69:38
    [119] Alfieri V,Argenio P,Caiazzo F,et al. Reduction of surface roughness by means of laser processing over additive manufacturing metal parts. Mater,2017,10(1):30
    [120] Wang D,Liu Y,Yang Y Q,et al. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyping J,2016,22(4):706
    [121] Xiong J,Li Y J,Li R,et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol,2018,252:128
    [122] Wu X H,Liang J,Mei J F,et al. Microstructures of laser-deposited Ti--6Al-4V. Mater Des,2004,25(2):137
    [123] Zuo H S,Li H J,Qi L H,et al. Effect of non-isothermal deposition on surface morphology and microstructure of uniform molten aluminum alloy droplets applied to three-dimensional printing. Appl Phys A,2015,118(1):327
    [124] Zhai Y W,Galarraga H,Lados D A. Microstructure evolution,tensile properties,and fatigue damage mechanisms in Ti--6Al--4V alloys fabricated by two additive manufacturing techniques.Procedia Eng,2015,114:658
    [125] Murr L E,Gaytan S M,Ramirez D A,et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol,2012,28(1):1
    [126] Liu X F,Li A,Yu B,et al. A High Efficiency Metal 3D Printing Equipment and Method:China Patent,CN201710068480.9. 2017-07--07(刘雪峰,李昂,俞波,等.一种高效金属3D打印设备和方法:中国专利,CN201710068480. 9. 2017-07-07)