基于奇异摄动理论的植物工厂温度控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control of plant factory based on singular perturbation
  • 作者:杨泽文 ; 贾鹤鸣 ; 宋文龙 ; 朱传旭 ; 吕帅
  • 英文作者:YANG Zewen;JIA Heming;SONG Wenlong;ZHU Chuanxu;LV Shuai;College of Mechanical and Electrical Engineering, Northeast Forestry University;College of Automation, Harbin Engineering University;
  • 关键词:植物工厂 ; 最优控制 ; 成本函数 ; 奇异摄动
  • 英文关键词:plant factory;;optimal control;;cost function;;singular perturbation
  • 中文刊名:JSGG
  • 英文刊名:Computer Engineering and Applications
  • 机构:东北林业大学机电工程学院;哈尔滨工程大学自动化学院;
  • 出版日期:2017-10-23 16:58
  • 出版单位:计算机工程与应用
  • 年:2018
  • 期:v.54;No.909
  • 基金:中央高校基本科研业务费专项资金项目(No.2572014BB03);; 黑龙江省研究生教育创新工程资助项目(No.JGXM_HLJ_2016014);; 国家自然科学基金(No.31270757,No.31470714,No.51609048)
  • 语种:中文;
  • 页:JSGG201814038
  • 页数:6
  • CN:14
  • 分类号:229-233+260
摘要
通过研究植物工厂与作物系统,结合非线性奇异摄动理论相关理论对植物工厂内部环境进行控制。首先阐述了基于能量角度对植物工厂与作物结合的动态模型描述各个系统状态变量之间的关系,然后建立了关于温度的最优控制模型,并将最优控制模型进行一般公式化。基于奇异摄动理论将非线性植物工厂与作物系统分解成快慢系统。利用系统中的双重时间尺度,分别设计出慢子系统和快子系统的成本函数。最后通过MATLAB软件进行仿真,得出最优控制曲线,结果表明得出的控制器能有效地控制植物工厂内部温度,并能保证对植物工厂加热时间最短,以实现植物工厂收益最高。
        The plant factory and crop system is studied, combining the theory of nonlinear singular perturbation theory related to control the environment within the plant factory. Firstly, based on the dynamic model, the relationship between the state variables of the plant and the plant is described, then the optimal control model about temperature is established,and the general formula for the optimal control model is established, too. Based on the singular perturbation theory the nonlinear plant factory and crop system is decomposed into a fast-slow system. Using the double time scale in the system,slow and fast subsystems of the cost function are designed respectively. Finally, the optimal control curve is obtained through the MATLAB software simulation, the results show that the controller can effectively control plant factory internal temperature, can guarantee the heating time on plant factory shortest, in order to realize the optimal revenue of plant factory.
引文
[1]邱兆美,赵龙,贾海波.植物工厂发展趋势与存在问题分析[J].农机化研究,2013(10):230-233.
    [2]杨其长.植物工厂的发展策略[J].科技导报,2014(10):20-24.
    [3]刘文科,杨其长.LED植物光质生物学与植物工厂发展[J].科技导报,2014(10):25-28.
    [4]余锡寿,刘跃萍.封闭型植物工厂发展现状与展望[J].农业展望,2015(7):46-49.
    [5]张晓慧,周增产,王峻峰,等.植物工厂关键技术的研究与应用[J].北方园艺,2010(4):204-207.
    [6]蒋新松,封锡盛,工棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000:22-24.
    [7]罗孟德,贾鹤鸣,赵文科,等.微型植物工厂营养液循环控制系统设计[J].科技创新与生产力,2017(5):70-74.
    [8]周曼丽.植物工厂环境控制系统的设计[D].江苏镇江:江苏科技大学,2012.
    [9]Katayama N.Utilization of the plant waste in the water culture plant Factory[J].IFAC Proceedings Volumes,2013,46(4):75-76.
    [10]Kwon S Y,Ryu S H,Lim J H.Design and implementation of an integrated management system in a plant factory to save energy[J].Cluster Computing,2014,17(3).
    [11]Ferreira P M,Ruano A E.Discrete model-based greenhouse environmental control using the branch&bound algorithm[J].IFAC Proceedings Volumes,2008,41(2):2937-2943.
    [12]Revathi S,Sivakumaran N.Fuzzy based temperature control of greenhouse[J].IFAC Papers On Line,2016,49(1):549-554.
    [13]Beschi M,Pawlowski A,Guzmán J L,et al.Symmetric send-on-delta PI control of a greenhouse system[J].IFACProceedings Volumes,2014,47(3).
    [14]涂川川.基于BP神经网络PID控制的温室环境控制系统的仿真研究[D].长春:吉林农业大学,2012.
    [15]屈毅,宁铎,赖展翅,等.温室温度控制系统的神经网络PID控制[J].农业工程学报,2011(2):307-311.
    [16]马太光,陈晓丽,郭文忠,等.不同红外补光模式对植物工厂生菜生长及品质的影响[J].中国农业气象,2017(5):301-307.
    [17]贾鹤鸣,朱传旭,宋文龙,等.基于嵌入式控制器的微型植物工厂系统设计[J].森林工程,2017,33(4):58-64.
    [18]张宇,肖玉兰.人工光植物工厂生产成本构成和经济效益分析[J].长江蔬菜,2017(4):34-40.
    [19]Seginer I.Optimal control techniques for energy conservation in controlled environments[J].CNRE Bulletin(FAO),1988.
    [20]Seginer I.Optimal greenhouse production under economic constraints[J].Agricultural Systems,1989,29:67-80.
    [21]Seginer I.Optimizing greenhouse operation for best aerial environment[J].Acta Horticulturae,1980,106:169-178.
    [22]刘华平,孙富春,何克忠,等.奇异摄动控制系统:理论与应用[J].控制理论与应用,2003(1):1-7.
    [23]李永博,周伟,汪小旵,等.基于奇异摄动理论的综合温室控制系统设计[J].农业机械学报,2012(5):184-189.