一锅法制备Co_3O_4/g-C_3N_4复合光催化剂及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Photocatalytic Activity of Co_3O_4/g-C_3N_4 Composite Photocatalysts via One-Pot Synthesis
  • 作者:段丽颖 ; 路姗姗 ; 段芳 ; 陈明清
  • 英文作者:DUAN Li-Ying;LU Shan-Shan;DUAN Fang;CHEN Ming-Qing;Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,School of Chemical and Material Engineering, Jiangnan University;
  • 关键词:g-C_3N_4 ; Co_3O_4/g-C_3N_4复合光催化剂 ; 多孔结构 ; 光催化
  • 英文关键词:g-C_3N_4;;Co_3O_4/g-C_3N_4 composite photocatalysts;;porous structure;;photocatalytic
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:江南大学化学与材料工程学院合成与生物胶体教育部重点实验室;
  • 出版日期:2019-05-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:中国博士后科学基金(No.2017M611694);; 国家自然科学基金(No.21571084,51302108)资助项目
  • 语种:中文;
  • 页:WJHX201905005
  • 页数:10
  • CN:05
  • ISSN:32-1185/O6
  • 分类号:51-60
摘要
以三聚氰胺和六水合氯化钴为原料,一锅法制备Co_3O_4负载的多孔石墨相氮化碳(Co_3O_4/g-C_3N_4)复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等手段对其结构和光学特性进行表征。以盐酸四环素(TC)为目标污染物,评价了不同负载量Co_3O_4/g-C_3N_4复合光催化剂的可见光催化性能。结果表明,所制备的Co_3O_4/g-C_3N_4复合光催化剂为多孔结构,其比表面积较大,并在可见光区域具有显著的吸收。利用原位生成的Co_3O_4纳米粒子在氮化碳表面形成异质结构,可有效转移光生载流子,降低光生电子-空穴的再结合率,从而提高光催化活性。并且存在最佳Co_3O_4复合量,当六水合氯化钴加入量为三聚氰胺的8%(w/w)时,所制备的复合光催化剂CoCN-8具有最佳的光催化性能。在可见光的照射下,60 min内可降解85%的TC,而同样条件下,纯g-C_3N_4仅降解23%的TC。
        A series of Co_3O_4/g-C_3N_4 composite photocatalysts were prepared by a one-pot method using melamine and cobalt chloride hexahydrate as raw materials. The structure and optical properties of the synthesized samples were characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), transmission electron microscopy(TEM),UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS) and photoluminescence spectrum(PL). The photocatalytic activities of Co_3O_4/g-C_3N_4 composites were evaluated by using tetracycline hydrochloride(TC) as a model pollutant under visible light irradiation. The results indicated that Co_3O_4/g-C_3N_4 composite photocatalysts were porous structures with high specific surface area, which have significant light absorption in visible light region. The in-situ generated Co_3O_4 nanoparticles can form heterojunctions on the surface of g-C_3N_4, which can effectively transfer the photon-generated carriers and decrease the recombination rate of electrons and holes, thus the photocatalytic activity can be efficiently improved. Besides, there was an optimal amount of Co_3O_4 for the Co_3O_4/gC_3N_4 composite photocatalysts. When the adding amount of cobalt chloride hexahydrate was 8%(w/w) of melamine, the obtained composite photocatalyst(CoCN-8) showed the highest photocatalytic performance and the degradation of TC can reach 85% within 60 min under visible light irradiation. However, in the same condition,the degradation of TC can only reach 23% by pure g-C_3N_4 photocatalyst.
引文
[1]Wang X C,Maeda K,Thomas A,et al.Nat.Mater.,2009,8(1):76-80
    [2]Zhang F,Zhang C L,Wang W N,et al.ChemSusChem,2016,9(12):1449-1454
    [3]LI Na(李娜),WANG Ming(王茗),ZHAO Bei-Ping(赵北平),et al.Chinese J.Inorg.Chem.(无机化学学报),2016,32(6):1033-1040
    [4]Wang W N,Huang C X,Zhang C Y,et al.Appl.Catal.B,2018,224:854-862
    [5]Shi L,Chang K,Zhang H B,et al.Small,2016,12(32):4431-4439
    [6]Zhang F,Zhang C L,Peng H Y,et al.Part.Part.Syst.Char.,2016,33(5):248-253
    [7]Wang X C,Maeda K,Chen X F,et al.J.Am.Chem.Soc.,2009,131(5):1680-1681
    [8]Zhang C Y,Liu H H,Wang W N,et al.Appl.Catal.B,2018,239:309-316
    [9]Yan H.Chem.Commun.,2012,48(28):3430-3432
    [10]Han C C,Ge L,Chen C F,et al.Appl.Catal.,B,2014,147:546-553
    [11]Xu X L,Chen S J,Zheng W,et al.Nano Energy,2018,50:581-588
    [12]Yan S C,Li Z S,Zou Z G.Langmuir,2009,25(17):10397-10401
    [13]Li K X,Zeng Z X,Yan L S,et al.Appl.Catal.B,2015,165:428-437
    [14]Lv J L,Dai K,Zhang J F,et al.Appl.Surf.Sci.,2015,358(15):377-384
    [15]Sun Y J,Jiang J Z,Liu Y,et al.Appl.Surf.Sci.,2018,430(1):362-370
    [16]Zhu H L,Zheng Y Q.Electrochim.Acta,2018,265(1):372-378
    [17]Yan H J,Chen Y,Xu S M.Int.J.Hydrogen Energy,2012,37(1):125-133
    [18]Hu S Z,Li F Y,Fan Z P,et al.Dalton Trans.,2015,44(48):20889-20897
    [19]Wang Y,Wang X C,Antonietti M,et al.ChemSusChem,2010,3(4):435-439
    [20]Wang L M,Liu B,Ran S,et al.J.Mater.Chem.,2012,22(44):23541-23546
    [21]Qiu P X,Chen H,Jiang F.RSC Adv.,2014,4(75):39969-39977
    [22]Le S K,Jiang T S,Li Y W,et al.Appl.Catal.B,2017,200:601-610
    [23]Chen W,Liu T Y,Huang T,et al.Nanoscale,2016,8(6):3711-3719
    [24]Peng W C,Li X Y.Catal.Commun.,2014,49(5):63-67
    [25]Wu H J,Li C M,Che H N,et al.Appl.Surf.Sci.,2018,440(15):308-319
    [26]Wang X C,Chen X F,Thomas A,et al.Adv.Mater.,2010,21(16):1609-1612
    [27]Zhang H,Tian W,Guo X,et al.ACS Appl.Mater.Interfaces,2016,8(51):35203-35212
    [28]Shao H X,Zhao X,Wang Y B,et al.Appl.Catal.,B,2017,218:810-818
    [29]Mao Z Y,Chen J J,Yang Y F,et al.ACS Appl.Mater.Interfaces,2017,9(14):12427-12435