燃用低热值合成气的燃气轮机透平排气温度分散度优化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Exhaust Temperature Deviations for Gas Turbine for Low Heating Value Syngas
  • 作者:张波 ; 史绍平 ; 秦晔 ; 闫姝 ; 刘鑫 ; 陈新明 ; 穆延非 ; 郭雨桐
  • 英文作者:ZHANG Bo;SHI Shaoping;QIN Ye;YAN Shu;LIU Xin;CHEN Xinming;MU Yanfei;GUO Yutong;State Key Laboratory of Coal-Based Clean Energy (Huaneng Clean Energy Research Institute);
  • 关键词:燃气轮机 ; 合成气 ; 透平出口排气温度分散度 ; CFD
  • 英文关键词:gas turbine;;syngas;;exhaust temperature discrepancies at turbine outlet;;CFD
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:煤基清洁能源国家重点实验室(中国华能集团清洁能源技术研究院有限公司);
  • 出版日期:2019-02-27 09:02
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.616
  • 基金:中国华能集团公司科学技术项目(CERI/TS-18-HJK01)~~
  • 语种:中文;
  • 页:ZGDC201905012
  • 页数:11
  • CN:05
  • ISSN:11-2107/TM
  • 分类号:133-143
摘要
建立了一个关于燃用低热值合成气的燃气轮机的工程热力学模型,利用燃气轮机实际运行数据对该模型进行了校验。利用经过验证的热力学模型分析了该燃气轮机透平出口排气温度不同测点之间分散度较大的原因在于燃气轮机压气机出口至左、右侧燃烧室的压缩空气流量不平衡。根据压气机出口至左、右侧燃烧室顶部环形空间差压以及透平出口排气温度周向差异,给出了一种快速计算分别进入燃气轮机左、右侧燃烧室合成气流量的方法,据此调节合成气流量可以减少透平出口排气温度分散度。计算结果表明,利用该方法调节分别进入左、右侧燃烧室的合成气流量后,燃气轮机左、右侧燃烧室排气经过透平后温度的相对偏差由实际运行的平均3.55%(相当于平均29.7℃)可以减少到平均0.14%(相当于平均1.2℃)。CFD模拟表明,该合成气流量调节方案基本不影响燃气轮机燃烧稳定性,同时会略降低NOx排放。
        An engineering thermodynamic model was developed for the gas turbine for low heating value(LHV)syngas. The mathematical model has been validated against the industrial operational data and was employed to investigate the large temperature discrepancies observed among different sensors monitoring the exhaust from gas turbine. The reason of the large discrepancies found during industrial operation was attributed to the deviation between the flowrates of compressed air from the compressor to the combustors at left and right sides using the thermodynamic model. Finally, a method to reduce the exhaust temperature discrepancies was proposed.The method can quickly calculate required syngas flowrates to combustors at left and right sides based on the differential pressure differences from the outlet of the compressor to the annular spaces located on top of the combustors at left and right sides and the deviations of measured exhaust temperatures via the validated mathematical model. The simulated verification of varying the syngas flowrates to the combustors at left and right sides shows that the relative deviation of the exhaust temperatures can be lowered from average 3.55%(equivalent to average 29.7℃) at industrial operation to average 0.14%(equivalent to average 1.2℃)according to the calculation with the proposed method. The syngas variations according to the proposed method does not impact the stability of the combustion inside the combustors,but can lead to slightly lower NOx emissions at all power loads through CFD simulation.
引文
[1]Hossein Sahraei M,McCalden D,Hughes R,et al.Asurvey on current advanced IGCC power plant technologies,sensors and control systems[J].Fuel,2014,137:245-259.
    [2]焦树建.整体煤气化燃气-蒸汽联合循环:IGCC[M].北京:中国电力出版社,1996.Jiao Shujian.Integrated coal gasification and combined cycle:IGCC[M].Beijing:China Electic Power Press,1996(in Chinese).
    [3]张永生,穆克进,张哲巅,等.不同空气和燃料旋流强度下合成气稀释扩散火焰特性研究[J].中国电机工程学报,2009,29(2):63-68.Zhang Yongsheng,Mu Kejin,Zhang Zhedian,et al.Research on syngas diluted diffuse flame characteristics under different swirling intensity of air and fuel[J].Proceedings of the CSEE,2009,29(2):63-68(in Chinese).
    [4]秦晔,张波,闫姝,等.低热值燃气轮机烧嘴烧损问题的数值计算模拟研究[J].中国电机工程学报,2018,38(15):4459-4466(in Chinese).Qin Ye,Zhang Bo,Yan Shu,et al.Numerical simulation study of low-heating-value gas turbine nozzle melting[J].Proceedings of the CSEE,2018,38(15):4459-4466(in Chinese).
    [5]Gas turbines:Performance Test Codes[S].New York,N.Y.:American Society of Mechanical Engineers,2014.
    [6]姜焕农.燃机运行中对排烟温度分散度监视的重要性[J].燃气轮机技术,2007,20(3):13-16.Jiang Huannong.The importance of exhaust temperature spread monitor during gas turbine operation[J].Gas Turbine Technology,2007,20(3):13-16(in Chinese).
    [7]Gülen S C,Griffin P R,Paolucci S.Real-time on-line performance diagnostics of heavy-duty industrial gas turbines[J].Journal of Engineering for Gas Turbines and Power,2002,124(4):910-921.
    [8]胡静,归一数,单英雷.9F级燃气轮机主要控制系统分析[J].上海电力,2006(1):33-35.Hu Jing,Gui Yishu,Shan Yinglei.Primary control system of 9F gas turbine[J].Shanghai Electric Power,2006(1):33-35(in Chinese).
    [9]虎煜,陈学文.西门子V94.3A燃气轮机控制系统[J].上海电力,2006(2):152-155.Hu Yu,Chen Xuewen.Siemens V94.3A gas turbine control system[J].Shanghai Electric Power,2006(2):152-155(in Chinese).
    [10]Kumano S,Mikami N,Aoyama K.Advanced gas turbine diagnostics using pattern recognition[C]//ASME 2011Turbo Expo:Turbine Technical Conference and Exposition.Vancouver,British Columbia,Canada:ASME,2011:179-187.
    [11]毛丹,诸粤珊.三菱M701F燃气轮机控制系统简析[J].湖南工业大学学报,2008,22(6):76-79.Mao Dan,Zhu Yueshan.Analysis on control system for mitsubishi M701F gas turbine[J].Journal of Hunan University of Technology,2008,22(6):76-79(in Chinese).
    [12]Yang Zhijing,Ling B W K,Bingham C.Fault detection and signal reconstruction for increasing operational availability of industrial gas turbines[J].Measurement,2013,46(6):1938-1946.
    [13]俞立凡,金建荣.9FA燃机排气温度场偏转规律研究[J].电力建设,2009,30(3):63-66.Yu Lifan,Jin Jianrong.Study on deflection laws of 9FAgas-turbine exhaust temperature field[J].Electric Power Construction,2009,30(3):63-66(in Chinese).
    [14]胡欣.燃气轮机燃烧故障的原因分析[J].燃气轮机技术,2003,16(3):52-53.Hu Xin.Analysis of the combustion malfunction of gas turbine[J].Gas Turbine Technology,2003,16(3):52-53(in Chinese).
    [15]周晓宇,潘勇进.DLN-2.0+燃烧室燃烧异常的判断及处理[J].燃气轮机技术,2007,20(2):56-60.Zhou Xiaoyu,Pan Yongjin.Analysis and solution to combustion malfunction of DLN-2.0+combustor[J].Gas Turbine Technology,2007,20(2):56-60(in Chinese).
    [16]陈娇,王永泓,翁史烈.广义回归神经网络在燃气轮机排气温度传感器故障检测中的应用[J].中国电机工程学报,2009,29(32):92-97.Chen Jiao,Wang Yonghong,Weng Shilie.Application of general regression neural network in fault detection of exhaust temperature sensors on gas turbines[J].Proceedings of the CSEE,2009,29(32):92-97(in Chinese).
    [17]Tarassenko L,Nairac A,Townsend N,et al.Novelty detection for the identification of abnormalities[J].International Journal of Systems Science,2000,31(11):1427-1439.
    [18]朱飞翔,李本威,赵勇,等.基于核主元分析方法的燃气涡轮发动机燃烧系统实时监测与诊断[J].航空动力学报,2016,31(6):1450-1459.Zhu Feixiang,Li Benwei,Zhao Yong,et al.Real-time monitor and diagnosis of combustion system based on kernel principal component analysis[J].Journal of Aerospace Power,2016,31(6):1450-1459(in Chinese).
    [19]Chase M W Jr.NIST-JANAF thermochemical tables[M].4th ed.Gaithersburg:American Institutre of Physics and the American Chemical Society,1998.
    [20]Lide D R.CRC handbook of chemistry and physics[M].84th ed.Boca Raton,Florida:Taylor&Francis,2003.
    [21]Launder B E,Spalding D B.Lectures in mathematical models of turbulence[M].London,England:Academic Press,1972.
    [22]Pope S B.PDF methods for turbulent reactive flows[J].Progress in Energy and Combustion Science,1985,11(2):119-192.
    [23]Zel'dovich Y B.The oxidation of nitrogen in combustion and explosions[J].Acta Physicochimica,1946,21:577-628.
    [24]Fenimore C P.Formation of nitric oxide in premixed hydrocarbon flames[J].Symposium(International)on Combustion,1971,13(1):373-380.
    [25]ANSYS Fluent.Release 16.0[M].ANSYS Inc.,2014.
    [26]环境保护部.GB 13223-2011火电厂大气污染物排放标准[S].北京:中国环境科学出版社,2012.Ministry of Environmental Protection.GB 13223-2011Emission standard of air pollutants for thermal power plants[S].Beijng:China Environmental Science Press,2012(in Chinese).