挤压态Mg-8Gd-1Er-0.5Zr合金的抗蠕变性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Creep Resistance of As-extruded Mg-8Gd-1Er-0.5Zr Alloy
  • 作者:李淑波 ; 李瑞静 ; 王朝辉 ; 刘轲 ; 杜文博
  • 英文作者:Li Shubo;Li Ruijing;Wang Zhaohui;Liu Ke;Du Wenbo;Beijing University of Technology;
  • 关键词:Mg-8Gd-1Er-0.5Zr合金 ; 挤压 ; 抗蠕变性能 ; 蠕变机制 ; 析出相
  • 英文关键词:Mg-8Gd-1Er-0.5Zr alloy;;extrusion;;creep resistance;;creep mechanism;;precipitates
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:北京工业大学;
  • 出版日期:2019-02-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.391
  • 基金:国家重点研发计划(2016YFB0301101-1);; 国家自然科学基金(51401005);; 北京市自然科学基金(2162003)
  • 语种:中文;
  • 页:COSE201902026
  • 页数:7
  • CN:02
  • ISSN:61-1154/TG
  • 分类号:193-199
摘要
研究了挤压态Mg-8Gd-1Er-0.5Zr合金在不同温度(150~200℃)和应力(50~70MPa)条件下100h的蠕变行为。利用OM、TEM等手段观察了蠕变过程中的组织演变规律,并对蠕变机理进行了分析。结果表明,在本实验条件下,合金表现出优异的抗蠕变性能,所有的蠕变曲线均呈现出减速蠕变和稳态蠕变两个阶段;在150℃/50 MPa时稳态蠕变速率仅为6.48×10~(-11)s~(-1),蠕变量为0.007%;在200℃/50 MPa时稳态蠕变速率为4.26×10~(-9) s~(-1),蠕变量为0.226%;温度较低时(150℃)主要为扩散蠕变控制机制,温度较高时(175,200℃)蠕变机制以位错蠕变为主。蠕变过程中晶内析出的β′相与镁基体具有一定的位相关系:(020)β′//[10 10]Mg,[001]β′//[0001]Mg,阻碍位错运动,而晶界析出的β相可以钉扎晶界。二者协同作用,促进合金高温抗蠕变性能的提高。
        The creep behavior of the as-extruded Mg-8 Gd-1 Er-0.5 Zr alloy at various temperatures(150~200 oC) and stresses(50~70 MPa)for 100 h was studied. The microstructure evolution during creep was investigated by optical microscopy(OM) and transmission electron microscopy(TEM), and the creep mechanism was analyzed. The results show that the alloy exhibits good creep resistance under the experimental conditions. The creep curves can be divided into two stages: a deceleration creep stage and a steady creep stage. The steady-state creep rate is 6.48× 10~(-11) s~(-1) and the creep strain is 0.007% at the temperature of 150 oC and the stress of 50 MPa, while the steady-state creep rate is 4.26× 10~(-9) s~(-1) and the creep strain is 0.226% at the temperature of 200 oC and the stress of 50 MPa. In the case of lower temperature(150 oC), diffusion mechanism acts as the main control mechanism, whereas dislocation mechanism dominates at higher temperatures(175, 200 oC). Furthermore, the precipitates of β′ phase in grains and the β phase at grain boundaries form during the creep process. The orientation relationship between the β′ phase and the α-Mg matrix is(020)β′//[10 10]Mg, [001]β′//[0001]Mg. The β′ phase can effectively inhibit the dislocation gliding, and the β phase can pin gain boundaries, both of which play an important role synergistically in improving the high temperature creep resistance of the alloy.
引文
[1]Chen Zhenhua(陈振华).Heat-resistant Magnesium Alloy(耐热镁合金)[M].Beijing:Chemical Industry Press,2007:1
    [2]Li Wenxian(黎文献).Magnesium and Magnesium Alloys(镁及镁合金)[M].Changsha:Central South University Press,2005:575
    [3]Luo A A.International Materials Reviews[J],2004,49(1):13
    [4]Nie Jianfeng,Gao X,Zhu S M.Scripta Materialia[J],2005,53:1049
    [5]Xu Wenfan,Zhang Yu,Peng Liming et al.Metallurgical and Materials Transactions A[J],2014,45:4103
    [6]Bhatia M A,Mathaudhu S N,Solanki K N.Acta Materialia[J],2015,99:382
    [7]Wang Huan,Wang Qudong,Yin Dongdi et al.Materials Science and Engineering A[J],2013,578:150
    [8]Lin Yuan,Shi Wenchao,Zhong Yiquan et al.Materials Science and Engineering A[J],2015,639:274
    [9]Han Wenya,Yang Guangyu,Xiao Lei et al.Materials Science and Engineering A[J],2017,684:90
    [10]Kang Y H,Wang X X,Zhang N et al.Materials Science and Engineering A[J],2017,689:419
    [11]Zhang Shengli(张胜利),Yang Guangyu(杨光昱),Liu Shaojun(刘少军)et al.The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J],2012,22(2):331
    [12]Anyanwu I A,Kamado S,Kojima Y.Materials Transactions[J],2001,42(7):1212
    [13]Xu Wenfan(徐闻繁).The Creep Properties and Microstructures of Mg-Gd(-Y-Zn)-Zr Alloys(Mg-Gd(-Y-Zn)-Zr系合金的蠕变性能与微观组织研究)[D].Shanghai:Shanghai Jiaotong University,2014
    [14]Barucca G,Ferragut R,Fiori F et al.Acta Materialia[J],2011,59:4151
    [15]Li Huihui(李会会),Wang Bin(王斌),Yi Danqing(易丹青)et al.Materials Science and Engineering of Powder Metallurgy(粉末冶金材料科学与工程)[J],2014,19(4):576
    [16]Wang Xudong(王旭东).Study on the Microstructure Evolution and Mechanical Properties of Mg-Gd-Er-Zr Magnesium Alloys(Mg-Gd-Er-Zr合金显微组织演变及力学性能研究)[D].Beijing:Beijing University of Technology,2012
    [17]Hadorn J P,Sasaki T T,Nakata T et al.Scripta Materialia[J],2014,93:28
    [18]Squires R L,Weiner R T,Phillips M.Journal of Nuclear Materials[J],1963,8(1):77
    [19]Vickers W,Greenfield P.Journal of Nuclear Materials[J],1967,24(3):249
    [20]Xie Zhongzhu(谢中柱),Sun Wei(孙威),Fu Jianqiang(付建强)et al.Journal of Chinese Electron Microscopy Society(电子显微学报)[J],2007,26(6):536
    [21]Xu Wenfan,Zhang Yu,Peng Liming et al.Acta Materialia[J],2015,84:317
    [22]Evans R W,Wilshire B.Creep of Metals and Alloys[M].London:Institute of Metals,1985
    [23]Vagarali S S,Langdon T G.Acta Metallurgica[J],1981,29(12):1969
    [24]Yosuke Tamura,Sanao Kawamoto,Hiroshi Soda et al.Materials Transactions[J],2011,52(9):1777
    [25]Ping Xiuer(平修二).High Temperature Strength of Metal Materials(金属材料的高温强度)[M].Shanghai:Shanghai Scientific and Technical Press,1986:189
    [26]Chung S W,Watanabe H,Kim W J et al.Materials Transactions[J],2004,45(4):1266
    [27]Pekguleryuz M O,Kaya A A.Advanced Engineering Materials[J],2003,5(12):866
    [28]Chen Zhigang(陈志刚).Study on the Creep Behavior of SnAgCuRE Solder Joints(SnAgCuRE钎焊接头蠕变行为的研究)[D].Beijing:Beijing University of Technology,2003
    [29]Honma T,Ohkubo T,Hono K et al.Materials Science and Engineering A[J],2005,395:301