熔融制样-X射线荧光光谱法测定氢氧化铝和氧化铝中9种杂质元素含量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of nine impurity elements in aluminum hydroxide and alumina by XRFS with fusion sampling
  • 作者:马兵兵 ; 程光贵 ; 李科建 ; 廖俊梅 ; 徐阳 ; 卜云磊
  • 英文作者:Ma Bingbing;Cheng Guanggui;Li Kejian;Liao Junmei;Xu Yang;Bu Yunlei;The Laboratory of Chongqing Groungwater Resourse Utilization and Environmental Protection;Chongqing Geotechnical Engineering Test Center;
  • 关键词:熔融制样 ; X射线荧光光谱法 ; 氧化铝 ; 氢氧化铝 ; 杂质元素
  • 英文关键词:fusion sampling;;XRFS;;alumina;;aluminum hydroxide;;impurity element
  • 中文刊名:QJSS
  • 英文刊名:Light Metals
  • 机构:重庆市地下水资源利用与环境保护实验室;重庆岩土工程检测中心;
  • 出版日期:2017-12-20
  • 出版单位:轻金属
  • 年:2017
  • 期:No.470
  • 语种:中文;
  • 页:QJSS201712005
  • 页数:4
  • CN:12
  • ISSN:21-1217/TG
  • 分类号:17-20
摘要
采用熔融制样-X射线荧光光谱法测定了氢氧化铝和氧化铝中SiO_2、Fe_2O_3、Na_2O、K_2O、CaO、ZnO、TiO_2、V_2O_5、P_2O_5等9种微量和痕量杂质元素含量。样品以四硼酸锂-偏硼酸锂混合熔剂熔融,溴化锂为脱模剂,在800℃和1000℃下分别加热3min,然后在1150℃下熔融8min,冷却后制成玻璃片测定。用氧化铝和氢氧化铝国家标准物质绘制校准曲线,在一定范围内,荧光强度与化学含量呈线性关系。当杂质含量大于0.001%时,本法测定值与标准值相符,9种杂质成分的检出限在0.000084%~0.0074%之间,不同成分测定值的相对标准偏差(n=10)在0.56%~7.2%之间。
        XRFS was applied to the determination of nine trace and ultratrace impurities such as SiO_2,Fe_2O_3,Na_2O,K_2O,CaO,ZnO,TiO_2,V_2O_5 and P_2O_5 in aluminum hydroxide and alumina with fusion sampling. Using mixed Li_2B_4O_7 and LiBO_2 as flux,Li Br as release agent,the sample was heated for 3 min at 800℃ and 1000℃ respectively,and then melted at 1150 ℃ for 8 min and then cooled to prepare glass. The calibration curves were plotted with the standard materials of alumina and aluminum hydroxide. In a certain range,the fluorescence intensity was linear with the chemical content. When the impurity content was more than 0. 001%,the measured value of this method was in accordance with the standard value. The detection limits of the nine impurity components were found in the range of 0. 000084% ~ 0. 0074%,and the relative standard deviation( n = 10) of the different components is 0. 56% ~ 7. 2%.
引文
[1]赵冰洋,门翠双.论我国氧化铝企业的铝土矿供矿前景[J].轻金属,2016(8):8-12.
    [2]韩东战,尹中林,王建立.高纯氧化铝制备技术及应用研究进展[J].无机盐工业,2012,44(9):1-4.
    [3]邱枫,孙果宋.氧化铝的分类及应用[J].化工技术与开发,2016,45(1):23-27.
    [4]马兵兵,苏中华,弥海鹏,等.间接碘量法测定氧化铝生产流程样品铝酸钠溶液中硫离子、硫代硫酸根和亚硫酸根[J].冶金分析,2016,36(11):41-45.
    [5]谷红翠,高华,杨吉芳.分光光度法测定高纯氧化铝中的二氧化硅[J].分析试验室,2000,19(5):87-88.
    [6]杨谅孚,刘英波.原子吸收光谱法测定氧化铝中钾钠[J].冶金分析,2006,26(2):91-92.
    [7]卢桂萍,汪正,邱德仁,等.悬浮液进样自吸扣背景石墨炉原子吸收光谱法测定高纯氧化铝中铜、铁和钠含量[J].光谱学与光谱分析,2011,31(1):244-248.
    [8]胡汉祥.高频熔样-ICP-AES法测定氧化铝中杂质元素的研究[J].轻金属,2005(12):18-20.
    [9]姜郁,王通胜,魏志勇,等.微波消解-ICP-AES法测定氧化铝中杂质元素[J].分析试验室,2006,25(8):57-61.
    [10]张爱芬,刘帅,马慧侠,等.粉末压片X射线荧光光谱法测定氧化铝中杂质元素[J].冶金分析,2012,32(12):51-56.
    [11]马慧霞,张爱芬.X射线荧光光谱法测定氧化铝中杂质元素[J].理化检验-化学分析,2006,42(12):980-983,990.
    [12]胡芳菲,王长华,李继东.直流辉光放电质谱法测定氧化铝中杂质元素[J].质谱学报,2014,35(4):335-340.
    [13]马兵兵,弥海鹏,周西林,等.微波消解-ICP-AES法测定拟薄水铝石中11种微量或痕量杂质元素[J].分析试验室,2017,36(2):194-197.
    [14]刘静,马慧侠,白万里,等.X-射线荧光光谱法在分析冰晶石、电解质各组分中的应用[J].轻金属,2015(6):54-58.
    [15]马兵兵.高频熔融-X射线荧光光谱法测定拟薄水铝石中多种微量和痕量杂质成分[J].湿法冶金,2017,36(4):350-354.