民用无人机飞行风险评估与控制系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flight Risk Assessment and Control System for Civil UAS
  • 作者:贺强 ; 徐艺 ; 杨晓强
  • 英文作者:HE Qiang;XU Yi;YANG Xiao-qiang;Aviation Engineering Institute, Civil Aviation Flight University of China;Civil Aviation Safety Engineering Institute, Civil Aviation Flight University of China;
  • 关键词:语义 ; 危险源 ; 风险评估 ; 检索 ; 无人机系统
  • 英文关键词:semantic;;hazard;;risk assessment;;retrieval;;unmanned aircraft system
  • 中文刊名:SSJS
  • 英文刊名:Mathematics in Practice and Theory
  • 机构:中国民用航空飞行学院航空工程学院;中国民用航空飞行学院民航安全工程学院;
  • 出版日期:2019-01-23
  • 出版单位:数学的实践与认识
  • 年:2019
  • 期:v.49
  • 基金:中国民用航空飞行学院科学研究基金(J2016-37)
  • 语种:中文;
  • 页:SSJS201902016
  • 页数:9
  • CN:02
  • ISSN:11-2018/O1
  • 分类号:150-158
摘要
为了有效评估无人机系统飞行安全风险并提出针对性风险控制措施,设计了无人机系统飞行安全风险评估与控制系统.首先基于运营决策支持和立法基础数据收集这一目标建立了系统的框架结构;然后针对风险控制需求,设计了无人机事故案例本体表示,实现了基于语义和属性值的综合相似性检索算法;针对风险评估需求,软件实现了无人机系统飞行危险源识别方法和定量的风险评估模型,最后通过危险源识别与重用无人机事故案例的方式提出风险控制措施.实验结果表明,无人机风险评估与控制原型系统为无人机系统的飞行安全提供了系统的解决方案.
        In order to evaluate the safety risk effectively and present the risk control scheme for unmanned aircraft system flight task, the safety risk assessment and control system is developed. The objective of this system implementation was to support decision of operation and collect the basis data for legislation. The system framework was constructed according to this goal. Then, the UAS accident case representation based on ontology and the retrieval method integrated semantic and attribution was designed for the risk control. The hazard identification and quantitative flight risk assessment methods were realized. The risk control measures were proposed based on the hazard identification and reuse the accident cases. The experimental result shows that a systematic solution is provided for the flight safety of the UAS by the implemented prototype.
引文
[1] Clothier R A, Walker R A. Safety Risk Management of Unmanned Aircraft Systems[M]. Berlin:Springer Netherlands, 2015:1-37.
    [2] Waggoner B. Developing a risk assessment tool for unmanned aircraft system operations[D]. Seattle:Uiiversity of Washington, 2010.
    [3] Clothier R A, Palmer J L, Walker R A, et al. Definition of an airworthiness certification framework for civil unmanned aircraft systems[J]. Safety Science, 2011, 49(6):871-885.
    [4] Speijker L, Lee X, Leijgraaf R V D. Framework for unmanned aircraft systems safety risk management[J]. Sae International Journal of Aerospace, 2011, 4(2):1228-1242.
    [5] Lum C W, Gauksheim K, Kosel T,et al. Assessing and estimating risk of operating unmannedaerial systems in populated areas[C]. Proceeding in 11th AIAA Aviation Technology, Integration and Operations Conference, AIAA:Virginia Beach, 2011:1-12.
    [6] Andrews J D, Poole J, Chen W H. Fast mission reliability prediction for Unmanned Aerial Vehicles[J]. Reliability Engineering&System Safety, 2013, 120(12):3-9.
    [7] Sahawneh L R, Beard R W. A probabilistic framework for unmanned aircraft systems collision detection and risk estimation[C]. Proceeding in 53rd Annual Conference on Decision and Control,IEEE:Los Angeles, 2014:242-247.
    [8]许云红,周锐,夏洁等.无人机自动防撞冲突检测与优化控制方法[J].电光与控制,2014,21(1):1-6.
    [9]阳再清,刘志强.舰载无人机飞行安全性评估方法研究[J].宇航计测技术,2014, 34(6):84-88.
    [10]刘畅,王宏伦,姚鹏等.面向空中威胁的无人机动态碰撞区建模与分析[J].北京航空航天大学学报,2015,41(7):1231-1238.
    [11]万健,李敬,王衍洋.基于径向基的数网在线建模的民航安全风险监测仿真系统设计与实现[J].中国安全科学学报,2008, 18(10):45-49.
    [12] Clothier R A, Walker R A. Determination and evaluation of UAV safety objectives[C]. Proceeding in 21~(st)International Unmanned Air Vehicle Systems Conference, Berlin:Springer, 2006:193-207.
    [13] Scott A S, Douglas A W. The human factors analysis and classification system HFACS[J]. Gastroenterology Research, 2001, 1(5):207-212.
    [14]刘景方,邹平,张朋柱,等.一种改进的本体概念语义相似度算法研究[J].武汉理工大学学报,2010, 28(2):112-117.
    [15] Lum C W, Waggoner B. A risk based paradigm and model for unmanned aerial vehicles in the national airspace:AIAA-2011-142[R]. Reston:AIAA, 2011.