高低温交变湿热环境下外加载荷对不同孔隙率CFRP 拉伸力学性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of external loading on tensile mechanical properties of CFRP with different porosity under high and low temperature alternating humidity-heat environment
  • 作者:贾近 ; 姜明 ; 肖海英 ; 张东兴
  • 英文作者:JIA Jin;JIANG Ming;XIAO Haiying;ZHANG Dongxing;School of Materials Science and Engineering,Harbin Institute of Technology;Shanghai Composites Science &Technology CO.,Ltd;
  • 关键词:CFRP ; 孔隙率 ; 弯曲载荷 ; 湿热环境 ; 力学性能
  • 英文关键词:CFRP;;porosity;;bending load;;hygrothermal environment;;mechanical properties
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:哈尔滨工业大学材料科学与工程学院;上海复合材料科技有限公司;
  • 出版日期:2019-04-23
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:黑龙江省自然科学基金(E201311)
  • 语种:中文;
  • 页:HEBX201905004
  • 页数:9
  • CN:05
  • ISSN:23-1235/T
  • 分类号:29-37
摘要
通过高低温交变加速湿热循环试验及有限元模拟,研究了孔隙率和外加载荷对CFRP层合板湿热拉伸力学性能及界面破坏机理的影响.通过控制模压压力,制备出3种孔隙率的层合板;加载载荷分别为层合板最大弯曲载荷的30%、40%和60%.结果表明,孔隙率的增大是导致CFRP层合板湿热老化后拉伸性能大幅下降的主要原因,孔隙率越大,湿热拉伸强度下降越多.外加载荷能加速纤维与树脂基体界面脱粘,使材料湿热拉伸性能进一步下降,而且对不同孔隙率的层合板影响程度不一样,其中影响最大的是孔隙率为0.08的层合板,其次是孔隙率0.04的层合板,影响最小的是孔隙率为0.11的层合板.并且载荷越大,影响也越大,但其对材料湿热拉伸性能的影响远不如孔隙率的影响大.使用ABAQUS软件建立有限元模型,计算得到了层合板的各层拉伸应力分布,结果发现湿热循环导致90°层承受的拉伸应力上升,因此容易发生基体开裂及纤维/基体界面脱粘,导致力学性能下降,这一结果与试验结果相一致.计算得到的拉伸力学强度变化趋势与试验结果相一致.
        The effects of porosity and external loading on hygrothermal tensile mechanical properties and interfacial failure mechanism of CFRP laminates were studied by high and low temperature alternating accelerated hygrothermal cyclical test and finite element simulation. 3 kinds of laminates with different porosities were prepared by controlling molding pressure. The load on specimen was 30%, 40% and 60% of the maximum bending load of laminates, respectively. The results showed that the increase of porosity was the main reason leading to the sharp decrease of tensile properties of CFRP laminates after hot-humid aging. The greater the porosity was, the more hygrothermal tensile strength decreased. The external load could accelerate the debonding of the interface between fibers and resin matrix, further degraded the hygrothermal tensile strength of the composites, and had different effects on the laminates with different porosity. Among of them, the most influential one was the laminate with porosity of 0.08, the second was the laminate with porosity of 0.04, and the least was the laminate with porosity of 0.11. And the greater the load, the greater the impact, but the influence of load on the hygrothermal tensile properties of the laminates was far less than that of the porosity. ABAQUS software was employed to simulate tensile properties of composite specimen. The tensile stress distribution of the laminates was investigated, and it was found that the tensile stress increased at 90 degree layer due to the hydrothermal cycle. Therefore, the matrix cracking and fiber/matrix interface debonding were prone to occur, resulting in the decrease of mechanical properties, which was consistent with the experimental results. The variation trend of tensile mechanical strength calculated by the ABAQUS software was consistent with the experimental results.
引文
[1] 刘柳. 抗高冲击载荷CFRP层合结构力学性能研究[D]. 北京: 北京理工大学, 2016 LIU Liu. Mechanical property study of CFRP laminates subjected to high impact compressive loads[D]. Beijing: Beijing Institute of Technology, 2016
    [2] 易增博. 碳纤维增强环氧树脂基复合材料的制备及力学性能研究[D]. 兰州: 兰州交通大学, 2015 YI Zengbo. Study on preparation and mechanical property of carbon fiber reinforced epoxy resin composites[D]. Lanzhou: lanzhou Jiaotong University, 2015
    [3] Kim C, Chi H C, Son I, et al. Effect of microscale oil penetration on mechanical and chemical properties of carbon fiber-reinforced epoxy composites[J]. Journal of Industrial & Engineering Chemistry, 2017. 61: 112. DOI:10.1016/j.jiec.2017.12.007
    [4] WANG, HONGXIAO, XIAOHUI ZHANG, and YUGANG DUAN. Effects of drilling area temperature on drilling of carbon fiber reinforced polymer composites due to temperature-dependent properties[J]. The International Journal of Advanced Manufacturing Technology 96. 5-8(2018): 2943. DOI:10.1007/s00170-018-1810-7
    [5] BRUNNER A J, STELZER S, PINTER G, et al. Cyclic fatigue delamination of carbon fiber-reinforced polymer-matrix composites: Data analysis and design considerations[J]. International Journal of Fatigue, 2016, 83: 293. DOI:10.1016/j.ijfatigue.2015.10.025
    [6] PARK H S, CHOI M Y, KWON K A, et al. Study on the performance of infrared thermal imaging light source for detection of impact defects in CFRP composite sandwich panels[J]. Journal of the Korean Society for Nondestructive Testing, 2017, 37(2): 91. DOI:10.7779/JKSNT.2017.37.2.91
    [7] LI P, XU W Y. The diagnosis of manufacturing defects in composite materialradome based on antenna's far field data[J]. Materials Research Innovations, 2016, 19(sup5): S5-277. DOI:10.1179/1432891714Z.0000000001092
    [8] MERINO-PéREZ J L, ROYER R, MERSON E, et al. Influence of workpiece constituents and cutting speed on the cutting forces developed in the conventional drilling of CFRP composites[J]. Composite Structures, 2016, 140: 621. DOI:10.1016/j.compstruct.2016.01.008
    [9] XU C, MUDUNURU M K, NAKSHATRALA K B. Material degradation due to moisture and temperature. Part 1: Mathematical model, analysis, and analytical solutions[J]. Continuum Mechanics & Thermodynamics, 2016, 45(9): 1. DOI:10.1007/s00161-016-0511-4
    [10]BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al. Durability of CFRP strengthened steel plate double-strap joints in accelerated corrosion environments[J]. Composite Structures, 2017, 160: 1287. DOI:10.1016/j.compstruct.2016.10.101
    [11]XIE Z, XIE J, GUO Y, et al. Durability of CFRP-Wrapped concrete exposed to hydrothermal environment[J]. International Journal of Civil Engineering, 2018, 16(5): 527. DOI:10.1007/s40999-017-0159-x
    [12]TAN J L Y, DESHPANDE V S, FLECK N A. Failure mechanisms of a notched CFRP laminate under multi-axial loading[J]. Composites Part A: Applied Science and Manufacturing, 2015(77): 56. DOI:10.1016/j.compositesa.2015.06.005
    [13]GHAFOORI E, MOTAVALLI M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different pre-stress levels: experimental and numerical study[J]. Construction and Building Materials, 2015, 76: 194. DOI:10.1016/j.conbuildmat.2014.11.070
    [14]YANG Y, SNEED L, SAIIDI M S, et al. Emergency repair of an RC bridge column with fractured bars using externally bonded prefabricated thin CFRP laminates and CFRP strips[J]. Composite Structures, 2015, 133: 727. DOI:10.1016/j.compstruct.2015.07.045
    [15]HE Y, TIAN G, PAN M, et al. Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography[J]. Composite Structures, 2014, 109: 1. DOI:10.1016/j.compstruct.2013.10.049
    [16]陈德雄, 林有希, 林华. 碳纤维复合材料钻削加工分层缺陷研究进展[J]. 工具技术, 2016, 50(4): 3. DOI:10.3969/j.issn.1000-7008.2016.04.001 CHEN Dexiong, LIN Youxi, LIN Hua. Research progress of delam ination in drilling process of carbon fiber reinforced polymer composites[J]. Tool Engineering, 2016, 50(4): 3. DOI:10.3969/j.issn.1000-7008.2016.04.001
    [17]TENG J G, FEMNANDO D, YU T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates[J]. Engineering Structures, 2015, 86: 213. DOI:10.1016/j.engstruct.2015.01.003
    [18]LIN Y, GIGLIOTTI M, LAFARIE-FRENOT M C, et al. Experimental study to assess the effect of carbon nanotube addition on the through-thickness electrical conductivity of CFRP laminates for aircraft applications[J]. Composites Part B: Engineering, 2015, 76: 31. DOI:10.1016/j.compositesb.2015.02.015
    [19]ABRY J C, BOCHARD S, CHATEAUMINOIS A, et al. In situ detection of damage in CFRP laminates by electrical resistance measurements[J]. Composites Science and Technology, 1999, 59(6): 925. DOI:10.1016/S0266-3538(98)00132-8
    [20]孙旋, 童明波, 陈智,等. 碳纤维织物布层压复合材料湿热环境疲劳后剩余压缩强度[J]. 复合材料学报, 2016, 33(3): 535. DOI:10.13801/j.cnki.fhclxb.20150709.002 SUN Xuan, TONG Mingbo, CHEN Zhi, et al. Residual compressive strength after fatigue of carbon fiber fabric composite laminates in hy-drothermal environment[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 535. DOI:10.13801/j.cnki.fhclxb.20150709.002
    [21]SCHUERMANN M, GAFFURI M, HORST P. Multidisciplinary pre-design of supersonic aircraft[J]. Ceas Aeronautical Journal, 2015, 6(2): 207. DOI: 10.1007/s13272-014-0140-1
    [22]HSIAO H. Compression-after-impact strength and surface morphology in toughened composite materials[J]. International Journal of Fracture, 2012, 176(2): 229. DOI:10.1007/s10704-012-9736-9