电场增强锰掺杂硫化锌量子点室温磷光的肝素钠多糖检测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of Heparin Sodium Polysaccharide by Electric Field Enhanced Manganese Doped Zinc Sulfide Quantum Dots Room Temperature Phosphorescence
  • 作者:邓茗月 ; 叶翆红 ; 邹文生 ; 李卫华
  • 英文作者:DENG Mingyue;YE Cuihong;ZOU Wen-sheng;LI Weihua;School of Environment and Energy Engineering,Anhui Jianzhu University;School of Materials and Chemical Engineering,Anhui Jianzhu University;
  • 关键词:锰掺杂硫化锌量子点 ; 八胺丙基寡聚硅 ; 室温磷光 ; 肝素钠
  • 英文关键词:Mn capped ZnS QDs(Mn-ZnS QDs);;OA-POSS;;Room-temperature phosphorescence(RTP);;Heparin
  • 中文刊名:AHJG
  • 英文刊名:Journal of Anhui Jianzhu University
  • 机构:安徽建筑大学环境与能源工程学院;安徽建筑大学材料与化学工程学院;
  • 出版日期:2019-02-15
  • 出版单位:安徽建筑大学学报
  • 年:2019
  • 期:v.27;No.130
  • 基金:安徽省重点研发项目(1704a0902006);; 安徽省科技重大专项(17030801028);; 安徽省高校自然研究项目(KJ2018A0513)
  • 语种:中文;
  • 页:AHJG201901015
  • 页数:7
  • CN:01
  • ISSN:34-1325/TU
  • 分类号:79-85
摘要
文章报道了一种基于锰掺杂硫化锌量子点(Mn-ZnS QDs)的室温磷光(RTP)方法检测肝素钠。荷正电的八胺丙基寡聚硅(OA-POSS)与荷负电的半胱氨酸包裹的Mn-ZnS QDs在水溶液中通过静电作用自组装成纳米复合物。Mn-ZnS QDs在电场作用下缩短了点间距离,修复了表面缺陷、有效诱导QDs的激发与引起表面Mn2+重排,增强了Mn2+的RTP发射。当荷更高负电的肝素钠加入纳米复合物体系中,发生三组分竞争作用,旧的纳米复合物分解,新的OA-POSS与肝素钠聚集复合物形成,导致了Mn-ZnS QDs的RTP逐渐衰减,这种衰减的RTP信号被用来检测肝素钠。衰减的RTP强度(ΔP)和肝素钠浓度在2.5到70μM范围内存在着很好的线性相关关系(R=0.991),检测限为2.0μM,5次测定的相对标准偏差为6.9%。本文提出的方法非常适合选择性探测复杂样品中肝素钠。
        Herein a room-temperature phosphorescence(RTP) approach for the detection of heparin based on Mn capped ZnS QDs(Mn-ZnS QDs) was reported. The nanocompsites were formed by electrostatic interaction in solution between OA-POSS positively charged and L-cysteine coated Mn-ZnS QDs negatively charged. The distance among QDs was shortened by electric field,and then the defects on the surface of QDs were repaired,the excitation of QDs was effectively induced and Mn2+on the surface of QDs were rearranged,resulting in the enhancement of RTP of Mn2+. When heparin with much higher negative charge was added into the above nanocompsites system,competitive effect among three component happened. Accordingly,old nanocompsites were decomposed and,new ones took shape between OA-POSS and heparin,causing the decayed RTP,which was taken advantage of the detection of heparin. Mn-ZnS QDs showed a very good linearity in the range of 2.5-75 μM heparin with detection limit down to 2 μM and RSD of 6.9%(n = 5). The proposed method is well-suited for selective detection of the heparin in complex samples.
引文
[1] Szelke,H,Schubel,S,Harenberg,J,Kramer,R. Interaction of heparin with cationic molecular probes:Probe charge is a major determinant of binding stoichiometry and affinity[J]. Bioorg. Med. Chem. Lett,2010,20(4):1445-1447.
    [2] Zhan R, Fang Z, Liu B. Naked-eye detection and quantification of heparin in serum with a cationic polythiophene[J]. Analytical Chemistry,2010,82(4):1326.
    [3] Shi J,Pu K Y,Zhan R,et al. Cationic Conjugated Polymer/Heparin Interpolyelectrolyte Complexes for Heparin Quantification[J]. Macromolecular Chemistry&Physics,2009,210(15):1195–1200.
    [4] Wang S,Chang Y T. Discovery of heparin chemosensors through diversity oriented fluorescence library approach[J]. Chemical Communications, 2008,10(10):1173.
    [5] Chen Q,Cui Y,Cao J,et al. Water-soluble conjugated polyelectrolyte with pendant glycocluster:Synthesis and its interaction with heparin[J]. Polymer,2011,52(2):383-390.
    [6] Jagt R B C. Gomez-Biagi,R. F,Nitz M. PatternBased Recognition of Heparin Contaminants by an Array of Self-Assembling Fluorescent Receptors[J].Angew. Chem. Int. Ed,2009,48(11):1995-1997.
    [7] Sauceda J C,Duke R M,Mark N. Designing fluorescent sensors of heparin.[J]. Chembiochem A European Journal of Chemical Biology,2007,8(4):391-.
    [8] Zhong Z,Anslyn E V. A colorimetric sensing ensemble for heparin[J]. Journal of the American Chemical Society,2002,124(31):9014-9015.
    [9] Bríza T,Kejík Z,CísarováI,et al. Optical sensing of sulfate by polymethinium salt receptors:colorimetric sensor for heparin.[J]. Chemical Communications,2008,39(16):1901-.
    [10] Luo H Q, Liu S P, Liu Z F, et al. Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications[J]. Analytica Chimica Acta,2001,449(1):261-270.
    [11] Luo H Q, Liu S P, Li N B, et al. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin–crystal violet system and their analytical application[J]. Analytica Chimica Acta,2002,468(2):275-286.
    [12] Huang C Z,Pang X B,Li Y F,et al. A resonance light scattering ratiometry applied for binding study of organic small molecules with biopolymer[J]. Talanta,2006,69(1):180-186.
    [13] Szelke H, Sharenberg S. Interaction of heparin with cationic molecular probes:probe charge is a major determinant of binding stoichiometry and affinity[J]. Bioorganic&Medicinal Chemistry Letters,2010,20(4):1445-1447.
    [14] Yan H,Wang H F. Turn-on room temperature phosphorescence assay of heparin with tunable sensitivity and detection window based on target-induced self-assembly of polyethyleneimine capped Mndoped ZnS quantum dots[J]. Analytical Chemistry,2011,83(22):8589-95.
    [15] Sánchez-Barragán I, Costa-Fernández J M, SanzMedel A,et al. Room-temperature phosphorescence(RTP)for optical sensing[J]. Trends in Analytical Chemistry,2006,25(10):958-967.
    [16] Chung J H, And C S A, Jang D J. Formation and Distinctive Decay Times of Surface-and Lattice-Bound Mn2+Impurity Luminescence in ZnS Nanoparticles[J]. Journal of Physical Chemistry B,2001,105(19):4128-4132.
    [17] He Y,Wang H F,Yan X P. Self-assembly of Mndoped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA.[J]. Chemistry(Weinheim an der Bergstrasse,Germany),2009,15(22):5436-40.
    [18] Wang H F,He Y,Ji T R,et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water.[J]. Analytical Chemistry,2009,81(4):1615-1621.
    [19] He Y,Wang H F,Yan X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids.[J]. Analytical Chemistry, 2008, 80(10):3832-3837.
    [20] Wu P, He Y,Wang H F, et al. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids.[J]. Analytical Chemistry,2010,82(4):1427-33.
    [21] Tang D,Zhang J,Zhou R,et al. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots[J]. Nanoscale,2018,10(18).
    [22] He Y,Wang H F,Yan X P. Exploring Mn-Doped ZnS Quantum Dots for the Room-Temperature Phosphorescence Detection of Enoxacin in Biological Fluids[J]. Analytical Chemistry,2008,80(10):3832-3837.
    [23] Wang H F,He Y,Ji T R,et al. Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water[J]. Analytical Chemistry,2009,81(4):1615-1621.
    [24] Wu P,Miao L N,Wang H F,et al. A Multidimensional Sensing Device for the Discrimination of Proteins Based on Manganese-Doped ZnS Quantum Dots[J]. Angewandte Chemie International Edition,2011,50(35):8118-21.
    [25] Zou W S,Sheng D,Ge X,et al. Room-Temperature Phosphorescence Chemosensor and Rayleigh Scattering Chemodosimeter Dual-Recognition Probe for 2,4,6-Trinitrotoluene Based on ManganeseDoped ZnS Quantum Dots[J]. Analytical Chemistry,2011,83(1):30-7.
    [26] Borse P H,Srinivas D,Shinde R F,et al. Effect of Mnconcentration in ZnS nanoparticles on photoluminescence and electron-spin-resonance spectra[J].Phys.rev.b,1999,60(12):8659-8664.
    [27] Hou Y,Ye J,Gui Z,et al. Temperature-modulated photoluminescence of quantum dots.[J]. Langmuir the Acs Journal of Surfaces&Colloids,2008,24(17):9682-5.
    [28] Zou W S,Sheng D,Ge X,et al. Room-Temperature Phosphorescence Chemosensor and Rayleigh Scattering Chemodosimeter Dual-Recognition Probe for 2,4,6-Trinitrotoluene Based on ManganeseDoped ZnS Quantum Dots[J]. Analytical Chemistry,2011,83(1):30-7.
    [29] Zou W S,Zhao Q C,Zhang J,et al. Enhanced photoresponsive polyethyleneimine/citric acid co-carbonized dots for facile and selective sensing and intracellular imaging of cobalt ions at physiologic pH.[J]. Analytica Chimica Acta,2017(970):64-72.