弱憎水性酸对钛酸纳米管吸附Cu(Ⅱ)的影响及其机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influences of Weak Hydrophobic Acid on Cu(Ⅱ) Adsorption onto Titanate Nanotubes and Mechanism
  • 作者:王婷 ; 郑彤 ; 崔锋
  • 英文作者:WANG Ting;ZHENG Tong;CUI Feng;Department of Environmental Engineering,Peking University,The Key Laboratory of Water and Sediment Sciences,Ministry of Education;Shenzhen Gaia Environmental Sci-Tech Co.,Ltd.;
  • 关键词:弱憎水性酸 ; 钛酸纳米管 ; 静电桥接 ; 吸附
  • 英文关键词:weak hydrophobic acid;;titanate nanotubes;;electrostatic bridge;;adsorption
  • 中文刊名:YJGX
  • 英文刊名:Journal of Basic Science and Engineering
  • 机构:北京大学环境工程系水沙科学教育部重点实验室;深圳盖雅环境科技有限公司;
  • 出版日期:2019-04-15
  • 出版单位:应用基础与工程科学学报
  • 年:2019
  • 期:v.27
  • 基金:国家自然科学基金项目(51508006);; 深圳市科技计划项目(CXZZ20150806155143919)
  • 语种:中文;
  • 页:YJGX201902008
  • 页数:9
  • CN:02
  • ISSN:11-3242/TB
  • 分类号:88-96
摘要
弱憎水性酸(WHoA)是水体天然有机物的重要组分之一,与腐殖酸等憎水性物质相比,其分子量相对较小,表面有较多的带电官能团,可通过静电或表面络合作用影响金属离子的吸附.本研究选用钛酸纳米管(titanate nanotubes,TNTs)作为吸附剂,探讨了WHoA存在下,Cu(Ⅱ)的吸附等温线、动力学和pH值影响.借助于XPS表征,分析了Cu(Ⅱ)在TNTs表面的吸附形态.结果表明,树脂连续分离法获得的WHoA含有类富里酸荧光基团,与原水相比,苯环类物质减少,亲水性更强.pH=2条件下,WHoA显著影响TNTs对Cu(Ⅱ)的吸附,WHoA浓度为0.15mg·L~(-1)时,Cu(Ⅱ)吸附量最大为23.8mg·g~(-1),这与WHoA表面带负电的亲水基团在Cu(Ⅱ)与TNTs之间的静电桥接作用有关.WHoA的存在会影响Cu(Ⅱ)的Langmuir吸附等温模型,然而并不影响其吸附动力学过程.XPS表征结果证实,WHoA参与了TNTs对Cu(Ⅱ)的吸附,吸附的Cu(Ⅱ)以3种形式存在:通过静电引力直接与TNTs表面的-ONa结合、通过WHoA的-COOH桥接吸附、以Cu(OH)_2形式沉淀吸附.
        The weak hydrophobic acid(WHoA) was an important component of natural organic matter.Compared with humic acid,WHoA displayed lower molecular weight and more charged functional groups,thus can impact the adsorption behavior of metal ions through electrostatic effect or complexation.In this study,titanate nanotubes(TNTs) was chosen as target adsorbent,and the absorption isotherm,kinetics,impact of initial pH were systemically discussed,followed by XPS detection to reveal the combination state of Cu(Ⅱ) on TNTs surface.As results,WHoA had lower aromatics,and higher hydrophilic capacity than the original water.Moreover,WHoA can significantly control Cu(Ⅱ) adsorption at pH=2,with the maximum adsorption capacity of 23.8 mg·g~(-1) for 0.15 mg·L~(-1) of WHoA,which could be attributed to the formation of WHoA-Cu complexation and electrostatic bridge effect between Cu(Ⅱ) and TNTs.The existence of WHoA can change the Langmuir model,whereas the adsorption kinetics still followed pseudo-second-order model well.Furthermore,results from XPS detection proved that,Cu(Ⅱ) was absorbed onto TNTs through three ways:direct combination with-ONa of TNTs,electrostatic bridge through-COOH of WHoA and Cu(OH)_2 precipitation.
引文
[1] Peng Y,Huang H,Zhang Y,et al.A versatile MOF-based trap for heavy metal ion capture and dispersion[J].Nature Communications,2018(9):187
    [2] 王荣华,李振山,石青.多壁碳纳米管同时吸附铅离子和对硝基酚的实验研究[J].应用基础与工程科学学报,2012,20(5):787-799 Wang Ronghua,Li Zhenshan,Shi Qing.Simultaneous adsorption of Pb2+ and p-nitrophenol on multi-walled carbon nano-tubes[J].Journal of Basic Science and Engineering,2012,20(5):787-799
    [3] Kasuga T,Hiramatsu M,Hoson A,et al.Formation of titanium oxide nanotube[J].Langmuir,1998,14:3160-3163
    [4] Kasuga T,Hiramatsu M,Hoson A,et al.Titania nanotubes prepared by chemical processing[J].Advanced Materials,1999,(11):1307-1311
    [5] Chen Q,Peng L M.Structure and applications of titanate and related nanostructures[J].International Journal of Nanotechnology,2007,(4):44-65
    [6] 王彦骐,刘文,王婷,等.一步水热法制备铁掺杂钛酸纳米管对砷的同步吸附和光催化[J].应用基础与工程科学学报,2015,23(4):656-668 Wang Yanqi,Liu Wen,Wang Ting,et al.Simultaneous arsenic removal via adsorption and photolysis by iron-doped titanate nanotubes synthesized by a one step water-solvent thermal method[J].Journal of Basic Science and Engineering,2015,23(4):656-668
    [7] Xiong L,Chen C,Chen Q,et al.Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method[J].Journal of Hazardous Materials,2011,189:741-748
    [8] Li N,Zhang L,Chen Y,et al.Adsorption behavior of Cu(II) onto titanate nanofibers prepared by alkali treatment[J].Journal of Hazardous Materials,2011,189:265-272
    [9] Liu W,Zhang P,Borthwick A G L,et al.Adsorption mechanisms of thallium(I) and thallium(III) by titanate nanotubes:Ion-exchange and co-precipitation[J].Journal of Colloid and Interface Science,2014,423:67-75
    [10] Xue S,Zhao Q L,Wei L L,et al.Behavior and characteristics of dissolved organic matter during column studies of soil aquifer treatment[J].Water Research,2009,43(2):499-507
    [11] 刘文新,陶澍.京密引水中天然有机物的形态[J].环境化学,1994,(4):296-301 Liu Wenxin,Tao Shu.Fraction of TOC in water from Jingmi canal[J].Beijing:Environmental Chemistry,1994,(4):296-301
    [12] Wang T,Liu W,Xiong L,et al.Influence of pH,ionic strength and humic acid on competitive adsorption of Pb(II),Cd(II) and Cr(III) onto titanate nanotubes[J].Chemical Engineering Journal,2013,215-216:366-374
    [13] Leenheer J A.Comprehensive approach to preparative isolation and fraction of dissolved organic carbon from natural water and wastewaters[J].Environmental Science & Technology,1981,15:578-587
    [14] 梁远,魏群山,王东升,等.滦河水体溶解性有机物的综合分级表征及其混凝去除过程[J].环境工程学报,2007,1(11):17-22 Liang Yuan,Wei Qunshan,Wang Dongsheng,et al.Study on the comprehensive fractional characteristics of DOM in Luan River and its removal by coagulation[J].Chinese Journal of Environmental Engineering,2007,1(11):17-22
    [15] Chen Q,Zhou W Z,Du G H,et al.Trititanate nanotubes made via a single alkali treatment[J].Advanced Materials,2002,14:1208-1211
    [16] Senesi N.Molecular and quantitative aspects of the chemistry of fulvic-acid and its interactions with metal ions and organic chemicals:Part Ⅱ.The fluorescence spectroscopy approach[J].Analytica Chimica Acta,1990,232(1):77-106
    [17] Wu F C,Tanoue E.Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J].Environmental Science & Technology,2001,35(18):3646-3652
    [18] 韩云飞,刘文,王婷,等.Cd(II) 、Zn(II) 、Cu(II)和Cr(III)在钛酸纳米管上的吸附行为[J].环境化学,2013,32(11):2007-2015 Han Yunfei,Liu Wen,Wang Ting,et al.Adsorption of Cd(II),Zn(II),Cu(II) and Cr(III) onto titanate nanotubes[J].Environmental Chemistry,2013,32(11):2007-2015
    [19] Sun W L,Xia J,Li S,et al.Effect of natural organic matter (NOM) on Cu(II) adsorption by multi-walled carbon nanotubes:relationship with NOM properties[J].Chemical Engineering Journal,2012,200:627-636
    [20] Peng C,Chai L Y,Tang C J,et al.Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation:a comparative research[J].Journal of Chemical Technology and Biotechnology,2017,92:325-333