冬季德州市大气颗粒物消光与化学组成关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between the aerosol light extinction and chemical composition in winter of Dezhou city
  • 作者:徐伟召 ; 朱雯斐 ; 王甜甜 ; 楼晟荣 ; 黄晓锋 ; 郭松
  • 英文作者:XU Weizhao;ZHU Wenfei;WANG Tiantian;LOU Shengrong;HUANG Xiaofeng;GUO Song;State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University;Shanghai Academy of Environmental Sciences;Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School;Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology;
  • 关键词:大气消光 ; 颗粒物化学组分 ; 正矩阵因子解析(PMF) ; 多元线性回归 ; MIE散射
  • 英文关键词:light extinction;;chemical compositions;;Positive Matrix Factorization(PMF);;multiple linear regression;;mie simulations
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:环境模拟与污染控制国家重点联合实验室北京大学环境科学与工程学院;上海市环境科学研究院;城市人居环境科学与技术实验室北京大学深圳研究生院环境与能源学院;江苏省大气环境与装备技术协同创新中心南京信息工程大学;
  • 出版日期:2019-01-23 16:13
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:科技部国家重点研发计划(No.2016YFC0202000,第三课题);科技部国家重点研发计划(No.2017YFC0213000,第三课题);; 国家自然科学基金(No.21677002,91844301);; 大气重污染成因与治理攻关项目(No.DQGG013)
  • 语种:中文;
  • 页:HJXX201904005
  • 页数:9
  • CN:04
  • ISSN:11-1843/X
  • 分类号:47-55
摘要
为了深入探究华北地区冬季大气颗粒物的消光特性和化学组分之间的关系,本研究于2017年11月—2018年1月在山东省德州市平原县对大气颗粒物消光和化学组成进行了连续在线观测.运用多元线性回归方法和MIE散射模型定量分析了颗粒物各化学组成对颗粒物消光的贡献,进一步地,利用高分辨飞行时间气溶胶质谱(HR-ToF-AMS)结合正矩阵因子解析模型(PMF)得出二次气溶胶(OOA)、生物质燃烧有机气溶胶(BBOA)、还原性气溶胶(HOA)、燃煤燃烧排放的有机气溶胶(CCOA)的浓度,并进一步结合线性回归模型得到OOA、BBOA、HOA、CCOA对消光的贡献.结果显示元素碳(EC)是颗粒物吸光的最主要贡献者, OOA、BBOA和CCOA对颗粒物吸光也具有一定贡献,这主要是由于二次生成和一次排放的棕色碳的吸光造成的.颗粒物各组分与散射关系的分析结果表明,有机物对颗粒物散射影响最大,其中OOA的散射截面最大,对颗粒物散射的贡献也最高,可以占到总散射的53.4%.颗粒物中有机物对大气总消光的贡献可达75.5%,其中OOA、BBOA、CCOA和HOA对总消光的贡献分别为47.8%、14.7%、9.0%、4.0%. Mie散射的结果与多元回归结果比较一致,但部分时间段偏差较大,因此在不同的研究中应根据不同情况选择研究方法.
        To investigate the relationship between the particle chemical composition and the light extinction in winter of the North China Plain(NCP), continuous measurements of particle scattering and absorption were conducted from November 2017 to January 2018 at a regional site, Pingyuan site in Shandong Province. Besides, an Aerodyne high resolution time-of-flight aerosol mass spectrometer(HR ToF AMS) combined with the positive matrix factor(PMF) analysis was applied to apportion the secondary organic aerosol(SOA), hydrocarbon-like organic aerosol(HOA), coal combustion organic aerosol(CCOA), and biomass burning organic aerosols(BBOA).The multiple linear regressions and the Mie modeling were deployed to estimate the contributions of the different chemical components to the particle light extinction. Our results indicate that the Element Carbon(EC) was the major contributor to the particle absorption. OOA, BBOA, and CCOA were also important because of the primary emission and secondary formation of brown carbon. Organics contributed the most to the particle scattering. OOA has the largest scattering cross section, and contributed to 53.4% of the particle scattering coefficients. Particulate organic matters contributed to 75.5% of the total light extinction, with the contributions of 47.8%, 14.7%, 9.0%, and 4.0% from SOA, HOA, COOA, and BBOA, respectively. Although the results of the multi regression and Mie modeling agree well during most of the time, one should carefully choose the method basing on the research purpose.
引文
Andreae M O, Gelencsér A. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 6(10): 3131-3148
    Bohren C F, Huffman D R. 2008. Absorption and scattering of light by small particles[M]. John Wiley & Sons
    陈雯廷, 黄晓锋, 田旭东, 等. 2017. 浙江金华秋季干气溶胶中主要化学组分的消光贡献解析[J]. 环境科学学报, 37(11): 4220-4226
    Canagaratna M R, Jayne J T, Jimenez J L, et al. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer[J]. Mass Spectrometry Reviews, 26(2): 185-222
    Cheng Y, He K, Du Z, et al. 2016. The characteristics of brown carbon aerosol during winter in Beijing[J]. Atmospheric Environment, 127: 355-364
    Cheng Y F, Wiedensohler A, Eichler H, et al. 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China[J]. Atmospheric Environment, 42(25): 6351-6372
    Cui F, Chen M, Ma Y, et al. 2016. Optical properties and chemical apportionment of summertime PM2.5 in the suburb of Nanjing[J]. Journal of Atmospheric Chemistry, 73(2): 119-135
    丁净, 韩素芹, 张裕芬, 等. 2015. 天津市冬季颗粒物化学组成及其消光特征[J]. 环境科学研究, 28(9): 1353-1361
    Han T, Qiao L, Zhou M, et al. 2015. Chemical and optical properties of aerosols and their interrelationship in winter in the megacity Shanghai of China[J]. Journal of Environmental Sciences, 27: 59-69
    Han T, Xu W, Chen C, et al. 2015. Chemical apportionment of aerosol optical properties during the Asia‐Pacific Economic Cooperation summit in Beijing, China[J]. Journal of Geophysical Research: Atmospheres, 120(23): 12,281-12,295
    Hand J L, Malm W C. 2007. Review of aerosol mass scattering efficiencies from ground‐based measurements since 1990[J]. Journal of Geophysical Research: Atmospheres, 112(D16)
    Jiang L, Zhang Z, Zhu B, et al. 2018. Comparison of parameterizations for the atmospheric extinction coefficient in Lin′an, China[J]. Science of the Total Environment, 621: 507-515
    刘爱霞, 韩素芹, 姚青, 等. 2013. 2011 年秋冬季天津 PM2.5 组分特征及其对能见度的影响[J]. 气象与环境学报, 29(2): 42-47
    Liu H J, Zhao C S, Nekat B, et al. 2014. Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain[J]. Atmospheric Chemistry and Physics, 14(5): 2525-2539
    Ma N, Zhao C S, Nowak A, et al. 2011. Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study[J]. Atmospheric Chemistry and Physics, 11(12): 5959-5973
    M?tzler C. 2002. MATLAB functions for Mie scattering and absorption, version 2. IAP Res. Rep, 8(1)
    Ming L, Jin L, Li J, et al. 2017. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events[J]. Environmental pollution, 223: 200-212
    Natusch D F S, Wallace J R. 1974. Urban aerosol toxicity: the influence of particle size[J]. Science, 186(4165): 695-699
    Pitchford M, Malm W, Schichtel B, et al. 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data[J]. Journal of the Air & Waste Management Association, 57(11): 1326-1336
    Sumlin B J, Pandey A, Walker M J, et al. 2018. Correction to atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning[J]. Environmental Science & Technology Letters, 5(3): 193-193
    Tao J, Zhang L, Gao J, et al. 2015. Aerosol chemical composition and light scattering during a winter season in Beijing[J]. Atmospheric Environment, 110: 36-44
    唐孝炎, 张远航, 邵敏, 等. 2006. 大气环境化学 (第二版)[M]. 北京: 高等教育出版社
    Wang J, Virkkula A, Gao Y, et al. 2017. Observations of aerosol optical properties at a coastal site in Hong Kong, South China[J]. Atmospheric Chemistry and Physics, 17(4):2653-2671
    Wang H, Shi G, Tian M, et al. 2017. Aerosol optical properties and chemical composition apportionment in Sichuan Basin, China[J]. Science of the Total Environment, 577: 245-257
    Wang Y H, Liu Z R, Zhang J K, et al. 2015. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing[J]. Atmospheric Chemistry and Physics, 15(6): 3205-3215
    Xia Y, Tao J, Zhang L, et al. 2017. Impact of size distributions of major chemical components in fine particles on light extinction in urban Guangzhou[J]. Science of the Total Environment, 587: 240-247
    Xu J, Tao J, Zhang R, et al. 2012. Measurements of surface aerosol optical properties in winter of Shanghai[J]. Atmospheric Research, 109: 25-35
    姚婷婷, 黄晓锋, 何凌燕, 等. 2010. 深圳市冬季大气消光性质与细粒子化学组成的高时间分辨率观测和统计关系研究[J]. 中国科学: 化学, 40(8): 1163-1171
    Zhang X Y, Wang Y Q, Niu T, et al. 2012. Corrigendum to Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols published in Atmos. Chem. Phys., 12, 779-799, 2012[J]. Atmospheric Chemistry and Physics, 12(14): 6273-6273
    Zhao T, Yang L, Yan W, et al. 2017. Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China[J]. Science of the Total Environment, 575: 458-466
    Zou J, Liu Z, Hu B, et al. 2018. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin[J]. Atmospheric Research, 201: 235-246