2018年热超构材料研发热点回眸
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seven hot research topics in thermal metamaterials in 2018
  • 作者:黄吉平
  • 英文作者:HUANG Jiping;Department of Physics,Fudan University;
  • 关键词:变换热学 ; 热学器件 ; 热传导 ; 热对流 ; 热辐射
  • 英文关键词:transformation thermotics;;thermal device;;conduction;;convection;;radiation
  • 中文刊名:KJDB
  • 英文刊名:Science & Technology Review
  • 机构:复旦大学物理学系;
  • 出版日期:2019-01-13
  • 出版单位:科技导报
  • 年:2019
  • 期:v.37;No.559
  • 基金:国家杰出青年科学基金项目(11725521)
  • 语种:中文;
  • 页:KJDB201901012
  • 页数:7
  • CN:01
  • ISSN:11-1421/N
  • 分类号:101-107
摘要
热超构材料研发活动在2018年再次取得丰硕的研究成果。回顾了热超构材料2018年在热传导、热对流、热辐射3种传热方式方面的研究进展及应用,归纳为7个研究热点:结构表面高效调控热传导、非均匀热学结构理论进展及应用开发、热学零折射隐身斗篷、建立了变换热对流理论、反常对流传热现象、从太阳和太空中同步收集能量、热超构材料应用设计与集成开发。
        This paper reviews the overall research and development of thermal metametraials in terms of thermal conduction,convection and radiation in 2018.We summarize in particular seven research topics,which are(1) efficient manipulation of thermal conduction by using structured surfaces,(2) theoretical establishment and application exploration of inhomogeneous thermal structure,(3) thermal cloak with thermal near-zero-index-materials,(4) establishment of transformation thermal convection theory,(5) abnormal phenomena of thermal convection,(6) thermal radiation:energy collection from the sun and the outer space,and(7) application design and integration development of thermal metamaterials.All these topics are related not only to fundamental research but also to application development.
引文
[1]Li Y,Bai X,Yang T Z,et al.Structured thermal surface for radiative camouflage[J].Nature Communications,2018,9(1):273.
    [2]Hu R,Zhou S L,Li Y,et al.Illusion thermotics[J].Advanced Materials,2018,30(22):1707237.
    [3]Hu R,Huang S Y,Wang M,et al.Binary thermal encoding by energy shielding and harvesting units[J].Physical Review Applied,2018,10(5):054032.
    [4]Xu L J,Yang S,Huang J P.Thermal theory for heterogeneously architected structure:Fundamentals and application[J].Physical Review E,2018,98(5):052128.
    [5]Xu L J,Huang J P.A transformation theory for camouflaging arbitrary heat sources[J].Physics Letters A,2018,382(46):3313.
    [6]Xu L J,Jiang C R,Huang J P.Heat-source transformation thermotics:From boundary-independent conduction to all-directional replication[J].European Physical Journal B,2018,91(7):166.
    [7]Xu L J,Wang R Z,Huang J P.Camouflage thermotics:A cavity without disturbing heat signatures outside[J].Journal of Applied Physics,2018,123(24):245111.
    [8]Li Y,Zhu K J,Peng Y G,et al.Thermal meta-device in analogue of zero-index photonics[J].Nature Materials,2019,18:48-54.
    [9]Han T C,Yang P,Li Y,et al.Full-parameter omnidirectional thermal metadevices of anisotropic geometry[J].Advanced Materials,2018,30(49):1804019.
    [10]Dai G L,Shang J,Huang J P.Theory of transformation thermal convection for creeping flow in porous media:Cloaking,concentrating,and camouflage[J].Physical Review E,2018,97(2):022129.
    [11]Dai G L,Huang J P.A transient regime for transforming thermal convection:Cloaking,concentrating and rotating creeping flow and heat flux[J].Journal of Applied Physics 2018,124(23):235103.
    [12]Wang B,Shih T M,Tian B,et al.Mildly zigzag heat transfer affected by aspect ratios for recirculating flows in rectangular enclosures[J].International Journal of Heat and Mass Transfer,2017,107:372-378.
    [13]Wang B,Shih T M,Chen X W,Chang R R G,Wu C X.Cascade-like and cyclic heat transfer characteristics affected by enclosure aspect ratios for low Prandtl numbers[J].International Journal of Heat and Mass Transfer,2018,124:131-140.
    [14]Wang B,Shih T M,Chen X W,et al.Anomalous cooling during transient heating processes[J].International Journal of Heat and Mass Transfer,2018,127:1253-1262.
    [15]Raman A P,Anoma M A,Zhu L X,et al.Passive radiative cooling below ambient air temperature under direct sunlight[J].Nature,2014,515(7528):540-544.
    [16]Zhai Y,Ma Y G,David S N,et al.Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J].Science,2017,355(6329):1062-1066.
    [17]Chen Z,Zhu L X,Li W,et al.Simultaneously and synergistically harvest energy from the sun and outer space[J].Joule,2018,3:1.
    [18]Ghashami M,Geng H Y,Kim T,et al.Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients[J].Physical Review Letters,2018,120(17):175901.
    [19]Dede E M,Zhou F,Schmalenberg P,et al.Thermal metamaterials for heat flow control in electronics[J].Journal of Electronic Packaging,2018,140(1):010904.
    [20]Dede E M,Schmalenberg P,Nomura T,et al.Design of anisotropic thermal conductivity in multilayer printed circuit boards[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2015,5(12):1763-1774.
    [21]Guo J,Qu Z G.Thermal cloak with adaptive heat source to proactively manipulate temperature field in heat conduction process[J].International Journal of Heat and Mass Transfer,2018,127:1212-1222.
    [22]Dai G L,Shang J,Wang R Z,et al.Nonlinear thermotics:Nonlinearity enhancement and harmonic generation in thermal metasurfaces[J].The European Physical Journal B,2018,91(3):59.
    [23]黄吉平.热超构材料十年简史[J].物理,2018,47(11):685-694.Huang Jiping.A brief history of ten years of thermal metamaterials[J].Physics,2018,47(11):685-694.
    [24]Fan C Z,Gao Y,Huang J P.Shaped graded materials with an apparent negative thermal conductivity[J].Applied Physics Letters,2008,92(25):251907.
    [25]Chen T Y,Weng C N,Chen J S.Cloak for curvilinearly anisotropic media in conduction[J].Applied Physics Letters,2008,93(11):114103.
    [26]Guenneau S,Amra C,Veynante D.Transformation thermodynamics:Cloaking and concentrating heat flux[J].Optics Express,2012,20(7):8207-8218.
    [27]Narayana S,Sato Y.Heat flux manipulation with engineered thermal materials[J].Physical Review Letters,2012,108(21):214303.
    [28]Maldovan M.Sound and heat revolutions in phononics[J].Nature,2013,503(7475):209-217.