生物绳野外原位修复干旱-半干旱地区农业面源污水——以博斯腾湖流域农排污水为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESTORATION OF AGRICULTURAL NON-POINT SOURCE POLLUTION IN ARID-SEMIARID AREAS BY BIOLOGICAL ROPE TECHNOLOGY IN SITU: TAKING AGRICULTURAL WASTEWATER IN LAKE BOSTEN CATCHMENT AS AN EXAMPLE
  • 作者:蔡舰 ; 高光 ; 邵克强 ; 白承荣 ; 胡洋
  • 英文作者:CAI Jian;GAO Guang;SHAO Ke-qiang;BAI Cheng-rong;HU Yang;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography & Limnology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:生物绳 ; 博斯腾湖流域 ; 农业面源污染 ; 营养盐去除
  • 英文关键词:biological ropes;;Lake Bosten;;agricultural non-point source pollution;;nutrients removement
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;中国科学院大学;
  • 出版日期:2017-01-22
  • 出版单位:环境工程
  • 年:2017
  • 期:v.35;No.223
  • 基金:十二五水专项子课题(2013ZX07104-004);; 环保公益性行业科研专项项目(201309041)
  • 语种:中文;
  • 页:HJGC201701005
  • 页数:6
  • CN:01
  • ISSN:11-2097/X
  • 分类号:25-30
摘要
农业面源污染带来的咸化、富营养化是干旱-半干旱地区湖泊流域亟需解决的问题。为探讨生物绳修复技术对此类农业面源污水修复效果,选取了具有代表性的博斯腾湖流域农排污水,对其进行了为期5个月(2015年6—10月)的野外原位修复实验。结果表明,生物绳在此环境下可在2周内达到较高附着生物量,并在温度适宜的情况下维持稳定的营养盐去除效果。生物绳对TN、TP和PO3-4的平均去除率分别达到(25.86±19.09)%、(32.65±23.79)%和(24.42±35.73)%,出水水质达GB 3838—2002《地表水环境质量标准》湖泊类水质的Ⅲ类水平。但是生物绳原位修复技术对污水中的氨氮和盐度并无明显效果,在干旱-半干旱地区的应用具有一定局限性。
        Recently,agricultural non-point source pollution aggravates the salinization and eutrophication problems in the lakes located in arid-semiarid areas,which need to be resovled urgently. In order to scrutinize the repairing effects of treatments by biological ropes on the agricultural wastewater with high nutrients and salinity,a experiment was conducted from June to October in 2015 in Lake Bosten Catchment. The result showed that the construction of periphyton appeared in 2 weeks while periphyton performed steadily effect of removing nutrients under proper temperature. Average removal rates of TN,TP and PO3-4by biological ropes were( 25. 86 ± 19. 09) %,( 32. 65 ± 23. 79) % and( 24. 42 ± 35. 73) %,respectively. After treatment,the water quality reached the standard of Level III according to the Standard of Surface Water Environment( GB3838—2002). However,the in situ biological rope repairing technology had weak effect on decreasing ammonia nitrogen and salinity in wastewater,which limited its application in arid-semiarid area.
引文
[1]高华中,姚亦锋.近50年来人类活动对博斯腾湖水位影响的量化研究[J].地理科学,2005,25(3):305-309.
    [2]赛·巴雅尔图,陈敏鹏,冯丽.博斯腾湖流域农业面源污染现状分析[J].水资源保护,2012,28(2):25-29.
    [3]夏军,左其亭,邵民诚.博斯腾湖水资源可持续利用:理论.方法.实践[M].北京:科学出版社,2003.
    [4]余志敏,袁晓燕,施卫明.面源污染水治理的人工湿地治理技术[J].中国农学通报,2010,26(3):264-268.
    [5]廖庆玉,卢彦,章金鸿.人工湿地处理技术研究概况及其在农村面源污染治理中的应用[J].广州环境科学,2012(2):29-34.
    [6]张亚娟,刘存歧,王军霞,等.植物-生物绳组合生态浮床对富营养化水体的净化效果[J].重庆师范大学学报.自然科学版,2012,29(3):31-36.
    [7]吴睿,张晓松,戴江玉,等.3种人工载体净化富营养化水体能力的比较[J].湖泊科学,2014,26(5):682-690.
    [8]Fairchild G W,Lowe R L.Artificial substrates which release nutrients:Effects on periphyton and invertebrate succession[J].Hydrobiologia,1984,114(1):29-37.
    [9]Mccormick P V,O’Dell M B,Iii R B E S,et al.Periphyton responses to experimental phosphorus enrichment in a subtropical wetland[J].Aquatic Botany,2001,71(2):119-139.
    [10]Li D L,Lu H,Chen Q,et al.Removal properties of nitrogen and phosphorous in eutrophic water with periphyton attached by artificial substrate[C]//International Conference on Future Biomedical Information Engineering.2010:480-486.
    [11]纪荣平,吕锡武,李先宁.人工介质对富营养化水体中氮磷营养物质去除特性研究[J].湖泊科学,2007,19(1):39-45.
    [12]陆红,晁建颖,张毅敏,等.人工介质富集附着生物对富营养化水体的净化作用[J].生态与农村环境学报,2011,27(3):76-81.
    [13]Porter K G,Feig Y S.The use of DAPI for identifying and counting aquatic microflora1[J].Limnology&Oceanography,1980,25(5):943-948.
    [14]Fleming-Singer M S,Horne A I.Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J].Environmental Science&Technology,2002,36(36):1231-1237.
    [15]Li X,Tang C,Han Z,et al.Relation between nitrous oxide production in wetland and groundwater:A case study in the headwater wetland[J].Paddy&Water Environment,2013,11(1/4):521-529.
    [16]孙瑞茹.水生植物—生物绳复合人工湿地净化二级出水的试验研究[D].上海:上海大学,2013.
    [17]Hansson L A.Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes[J].Limnology&Oceanography,1988,33(1):121-128.
    [18]Abell J M,zkundakci D,Hamilton D P.Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand Lakes:Implications for eutrophication control[J].Ecosystems,2010,13(7):966-977.
    [19]宋玉芝,秦伯强,高光.附着生物对富营养化水体氮磷的去除效果[J].长江流域资源与环境,2009,18(2):180-185.
    [20]Moorleghem C V,Schutter N D,Smolders E,et al.The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements[J].Hydrobiologia,2013,709(1):41-53.
    [21]周勇,操家顺,杨婷婷.生物填料在重污染河道治理中的应用研究[J].环境污染与防治,2007,29(4):289-292.
    [22]陈庆锋,杨红艳,马君健,等.人工水草在重污染河流生态修复中的应用进展[J].中国给水排水,2014,30(20):54-58.
    [23]Uygur A,KargF.Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor[J].Enzyme&Microbial Technology,2004,34(3):313-318.
    [24]周鹏.盐度冲击对活性污泥系统性能影响的研究[J].环境科学与技术,2011,34(5):65-68.
    [25]王若水,康跃虎,万书勤,等.内陆干旱区不同灌溉制度对盐碱地滴灌土壤盐分离子分布的影响[J].土壤通报,2013(3):567-574.
    [26]汤祥明,许柯,赛·巴雅尔图,等.博斯腾湖水环境综合治理[M].北京:化学工业出版社,2015.