三种组织TC17合金的疲劳裂纹扩展行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fatigue Crack Growth of TC17 Titanium Alloy with Three Microstructures
  • 作者:张赛飞 ; 曾卫东 ; 龙雨 ; 李欣 ; 徐建伟
  • 英文作者:Zhang Saifei;Zeng Weidong;Long Yu;Li Xin;Xu Jianwei;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University;
  • 关键词:TC17合金 ; 疲劳裂纹扩展 ; 等轴组织 ; 网篮组织 ; 球化组织
  • 英文关键词:TC17 titanium alloy;;fatigue crack growth;;equiaxed microstructure;;basket-waved microstructure;;globularized microstructure
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:西北工业大学凝固技术国家重点实验室;
  • 出版日期:2018-12-15
  • 出版单位:稀有金属材料与工程
  • 年:2018
  • 期:v.47;No.389
  • 基金:凝固技术国家重点实验室(西北工业大学)自主研究课题(153-ZH-2016)
  • 语种:中文;
  • 页:COSE201812025
  • 页数:7
  • CN:12
  • ISSN:61-1154/TG
  • 分类号:167-173
摘要
通过对TC17合金进行常规锻造、β锻造和"二次锻造"工艺,获得了等轴组织、网篮组织和球化组织3种典型微观组织,测试了不同显微组织对TC17合金疲劳裂纹扩展速率的影响。结果表明,显微组织对TC17合金的疲劳裂纹扩展速率具有显著影响,网篮组织的抗裂纹扩展能力最优,球化组织次之,等轴组织最差;断口分析表明,该合金的抗裂纹扩展能力与组织中的裂纹偏折和分叉密切相关。基于线弹性断裂力学和Paris公式,建立了3种典型组织TC17合金的疲劳裂纹扩展寿命预测模型,对预测模型的分析发现,高韧性组织具有显著较高的临界裂纹长度,而在裂纹扩展寿命方面,高韧性组织的优势并不十分明显。长裂纹扩展寿命仅占疲劳总寿命的极小部分,因而控制裂纹起始(形核和短裂纹扩展)更为重要,提高抗疲劳裂纹扩展能力的意义在于提高临界裂纹长度。
        Three typical microstructures for TC17 titanium alloy, i.e. equiaxed microstructure, basket-waved microstructure and globularized microstructure, were obtained by conventional forging, β forging and "secondary forging", respectively, and the fatigue crack growth rates of TC17 samples with the three microstructures were tested in order to evaluate the influence of different micro structures. The results reveal a significant dependence of microstructure on fatigue crack growth rate for this material. Basket-waved microstructure has an excellent fatigue crack growth resistance, followed by globularized microstructure, while the equiaxed microstructure shows the poorest propagation resistance. Fracture analysis shows that fatigue crack growth resistance is closely related to the crack deflection and bifurcation. On the basis of fracture mechanics, prediction models for fatigue crack growth life based on Paris equation were developed for the three different microstructures. The models suggest that the propagation life for the large crack in the three microstructure accounts for only a very small proportion of the total fatigue life, hence the control of crack initiation is more important. Superio r propagation resistance means a longer critical crack length, which is easily testable in practice.
引文
[1]Zheng Xiulin(郑修麟),Wang Hong(王泓),Yan Junhui(鄢君辉)et al.Fatigue Theory and Engineering Application of Material(材料疲劳理论与工程应用)[M].Beijing:Science Press,2013:17
    [2]Zhu Zhishou(朱知寿),Wang Xinnan(王新南),Tong Lu(童路)et al.Materials China(中国材料进展)[J],2010,29(5):14
    [3]Wu Chongzhou(吴崇周),Li Xingwu(李兴无),Huang Xu(黄旭)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2007,36(12):2128
    [4]Guo Ping(郭萍),Zhao Yongqing(赵永庆),Zeng Weidong(曾卫东).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2016,45(11):2937
    [5]Sauer C,Luetjering G.Journal of Materials Processing Technology[J],2001,117(3):311
    [6]Benedetti M,Heidemann J,Peters J O et al.Fatigue&Fracture of Engineering Materials&Structures[J],2005,28(10):909
    [7]Birosca S,Buffiere J Y,Karadge M et al.Acta Materialia[J],2011,59(4):1510
    [8]Di Peng(狄鹏),Tang Yuxi(汤育玺),Ji Shengli(冀胜利).Hot Working Technology(热加工工艺)[J],2016,17:135
    [9]Boyer R,Welsch G,Collings E W.Materials Properties Handbook:Titanium Alloys[M].OH:ASM International,1994:453
    [10]Wang Kaixuan(王凯旋),Zeng Weidong(曾卫东),Zhao Yongqing(赵永庆)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(5):784
    [11]Wang Kaixuan,Zeng Weidong,Zhao Yongqing et al.Materials Science&Engineering A[J],2010,527(10-11):2559
    [12]Foltz J W,Welk B,Collins P C et al.Metallurgical&Materials Transactions A[J],2011,42(3):645
    [13]Tian Wei(田伟),Fu Yu(伏宇),Zhong Yan(钟燕)et al.Transactions of Materials and Heat Treatment(材料热处理学报)[J],2016,37(9):57
    [14]Xu Jianwei,Zeng Weidong,Jia Zhiqiang et al.Journal of Alloys&Compounds[J],2014,603(30):239
    [15]Shi Xiaohui,Zeng Weidong,Shi Chunlin et al.Journal of Alloys&Compounds[J],2015,632:748
    [16]Ma Penghui(马鹏辉).Thesis for Doctorate(博士论文)[D].Qinhuangdao:Yanshan University,2016
    [17]Daud R,Ariffin A K,Abdullah S et al.Advanced Materials Research[J],2013,795:587
    [18]Shi X H,Zeng W D,Shi C L et al.Materials Science&Engineering A[J],2015,621:252
    [19]Ghonem H.International Journal of Fatigue[J],2010,32(9):1448
    [20]Chen Chuanyao(陈传尧).Fatigue and Fracture(疲劳与断裂)[M].Wuhan:Huazhong University of Science&Technology,2002:147
    [21]Guo Zhenzhen(郭真真).Thesis for Master(硕士论文)[D].Xi’an:Northwestern Polytechnical University,2014