基于EIFS和P-M的海底管道腐蚀疲劳寿命预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion fatigue life prediction of submarine pipe based on EIFS and P-M
  • 作者:李修波 ; 余建星 ; 谭玉娜 ; 冯志强 ; 韩翔希 ; 符妃
  • 英文作者:LI Xiubo;YU Jianxing;TAN Yuna;FENG Zhiqiang;HAN Xiangxi;FU Fei;State Kay Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration;Institute of Mechanical and Marine Engineering,Qinzhou University;
  • 关键词:腐蚀疲劳 ; 等效初始缺陷尺寸 ; P-M ; 疲劳寿命 ; 海底管道 ; 随机荷载
  • 英文关键词:corrosion fatigue;;EIFS;;P-M;;corrosion fatigue life;;submarine pipe;;random load
  • 中文刊名:HYGC
  • 英文刊名:The Ocean Engineering
  • 机构:天津大学水利工程仿真与安全国家重点实验室;高新船舶与深海开发装备协同创新中心;钦州学院机械与船舶海洋工程学院;
  • 出版日期:2019-01-30
  • 出版单位:海洋工程
  • 年:2019
  • 期:v.37
  • 基金:国家科技重大专项资助项目(2016ZX05028005-004);; 国家自然科学基金青年基金(51609169)
  • 语种:中文;
  • 页:HYGC201901010
  • 页数:9
  • CN:01
  • ISSN:32-1423/P
  • 分类号:87-95
摘要
鉴于腐蚀疲劳损伤的特殊性,研究了点蚀过程和腐蚀疲劳裂纹扩展过程。基于等效初始缺陷尺寸(EIFS)和线性累积损伤理论(P-M)方法,消除了点蚀形核、蚀坑生长及腐蚀疲劳短裂纹扩展对腐蚀疲劳寿命预测的影响;避免了基于单点蚀坑建立的腐蚀疲劳寿命预测表达式的弊端;合理地简化了随机荷载下腐蚀疲劳寿命的预测流程。利用现有试验数据,对基于EIFS和P-M方法建立的腐蚀疲劳寿命预测表达式进行了模型验证。结果显示,所提模型的有效性和合理性得到了验证,为工程实际中海底管道的腐蚀疲劳寿命预测提供了一种可行方法。
        According to the specificity of corrosion fatigue damage,the pitting process and the corrosion fatigue crack propagation process were studied separately. Based on the equivalent initial defect size( EIFS) and the linear cumulative damage( P-M) methods,the effects of pitting nucleation,pit growth,and corrosion fatigue-induced small crack propagation on the prediction of corrosion fatigue life are eliminated; the drawbacks of the expression of predicting corrosion fatigue life based on a single pit are avoided; and the prediction process of corrosion fatigue life under random load is rationally simplified. Based on the existing experiments,the model of corrosion fatigue life prediction based on the EIFS and P-M methods is verified. The results show that the rationality and accuracy of the proposed model are verified,and a feasible method for predicting the corrosion fatigue life of submarine pipe in practical projects is thus provided.
引文
[1] LI S X,AKID R. Corrosion fatigue life prediction of a steel shaft material in seawater[J]. Engineering Failure Analysis,2013,34(8):324-334.
    [2] NAN Z Y,ISHIHARA S,GOSHIMA T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution[J]. International Journal of Fatigue,2008,30(7):1181-1188.
    [3] KONDO Y. Prediction of fatigue crack initiation life based on pit growth[J]. Corrosion Science,1989,45(1):7-11.
    [4] SHI P,MAHADEVAN S. Corrosion fatigue and multiple site damage reliability analysis[J]. International Journal of Fatigue,2003,25(6):457-469.
    [5] ZHANG T,YANG Y G,SHAO Y W,et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy[J]. Electrochimica Acta,2009,54(15):3915-3922.
    [6] MA J,ZHANG B,WANG J Q,et al. Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue[J]. Corrosion Science,2010,52(9):2867-2877.
    [7] BHUIYAN M S,MUTOH Y,MURAI T,et al. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments[J]. International Journal of Fatigue,2008,30(10-11):1756-1765.
    [8] JENSSEN A,NORRING K,EFSING P. Swedish activities on alloy 690 and its weld metals[R]. Los Angeles,CA:EPRI MRP PWSCC Expert Panel Meeting,2008.
    [9] MURZATA G,AKID R. Empirical corrosion fatigue life prediction models of a high strength steel[J]. Engineering Fracture Mechanics,2000,67(5):461-474.
    [10] SHAHANI A R,KASHANI H M. Assessment of equivalent initial flaw size estimation methods in fatigue life prediction using compact tension specimen tests[J]. Engineering Fracture Mechanics,2013,99:48-61.
    [11]余建星,李小龙,苗春生.深海水下结构设计及试验[M].天津:天津大学出版社,2015:49.(YU Jianxing,LI Xiaolong,MIAO Chunsheng. Deep seawater structure design and experiment[M]. Tianjin:Tianjin University Press,2015:49.(in Chinese))
    [12] HARIHARAN K,PRAKASH R V,PRASAD M S. Weighted error criterion to evaluate strain-fatigue life prediction methods[J]. International Journal of Fatigue,2011,33(5):727-734.
    [13] KARUNANANDA K,OHGA M,DISSANAYAKE P B R,et al. Effect of high amplitude loading on fatigue life prediction of steel bridges[J]. Procedia Engineering,2011,14(2259):521-528.
    [14] MULLER M. Theoretical considerations on corrosion fatigue crack initiation[J]. Metallurgical Transactions A-Physical Metallurgy and Materials Science,1982,13(4):649-655.
    [15] CHLISTOVSKY R M,HEFFERNAN P J,DUQUESNAY D L. Corrosion-fatigue behavior of 7075-T651 aluminum alloy subjected to periodic overloads[J]. International Journal of Fatigue,2007,29(9-11):1941-1949.
    [16] GOSWAMI T K,HOEPPNER D W. Pitting corrosion fatigue of structural materials[J]. ASME-Publication-AD,1995,47:129-140.
    [17]詹伟刚.基于裂纹扩展的疲劳寿命预测及在起重机金属结构中应用[D].哈尔滨:哈尔滨工业大学,2014.(ZHAN Weigang. Fatigue life prediction based on crack propagation with application in crane metalic structure[D]. Harbin:Harbin Institute of Technology,2014.(in Chinese))
    [18]蒋祖国.飞机结构腐蚀疲劳[M].北京:航空工业出版社,1992:58.(JIANG Zuguo. Aircraft structure corrosion fatigue[M].Beijing:Aviation Industry Press,1991:58.(in Chinese))
    [19] LIU Y M,MAHADEVAN S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution[J].International Journal of Fatigue,2009,31(3):476-487.
    [20] AI-MUKHTAR A M,BIERMANN H,HUBNER P,et al. Determination of some parameters for fatigue life in welded joints using fracture mechanics method[J]. Journal of Materials Engineering and Performance,2010,19(9):1225-1234.
    [21] MCEVILY A J,WEI R P. Fracture mechanics and corrosion fatigue[J]. Fracture Mechanics&Corrosion Fatigue,1983:5-25.
    [22] RAGAB A,ALAWI H,SOREIN K. Corrosion fatigue of steel in various aqueous environments[J]. Fatigue&Fracture of Engineering Materials&Structures,1989,12(6):469-479.
    [23] BHUIYAN M S,MUTOH Y,MURAI T,et al. Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5 in a 5%Na Cl environment[J]. Engineering Fracture Mechanics,2010,77(10):1567-1576.
    [24] MOLENT L,MCDONALD M,BARTER S,et al. Evaluation of spectrum fatigue crack growth using variable amplitude data[J].International Journal of Fatigue,2008,30(1):119-137.
    [25]高会英.复杂应力状态下焊接接头的疲劳寿命预测方法研究[D].成都:电子科技大学,2016.(GAO Huiying. Research on fatigue life prediction methods of welded joints under complex stress states[D]. Chengdu:University of Electronic Science and Technology,2016.(in Chinese))
    [26] HAGN L. Life prediction methods for aqueous environments[J]. Materials Science and Engineering A,1988,103(1):193-205.
    [27] PARIS P,ERDOGAN F. A critical analysis of crack growth laws[J]. Journal of Basic Engineering,Transaction of the ASME,1963,85:528-534.
    [28]肖纪美.金属的韧性与韧化[M].上海:上海科学技术出版社,1982:83.(XIAO Jimei. Toughness and toughness of metals[M]. Shanghai:Shanghai Science and Technology Press,1982:83.(in Chinese))
    [29] CHEN N Z,WANG G,SOARES C G. Palmgren-Miner's rule and fracture mechanics-based inspection planning[J].Engineering Fracture Mechanics,2011,78(18):3166-3182.
    [30]王恒,苏波泳,花国然,等.海洋工程装备材料E690高强钢腐蚀疲劳裂纹扩展实验研究[J].热加工工艺,2016,45(16):48-51.(WANG Heng,SU Boyong,HUA Guoran,et al. Experimental research on corrosion fatigue crack propagation of marine engineering equipment materials E690 high strength steel[J]. Hot Working Technology,2016,45(16):48-51.(in Chinese))