温度和pH触发的可调多级浸润和粘附力聚合物刷(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable multi-stage wettability and adhesion force on polymer brushes triggered by temperature and pH
  • 作者:张爽 ; 王健 ; 张雪巍 ; 宋文龙 ; 王树涛
  • 英文作者:Shuang Zhang;Jian Wang;Xuewei Zhang;Wenlong Song;Shutao Wang;The State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University;CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:The State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University;CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2018-11-08 14:19
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:financially supported by the National Natural Science Foundation of China (21774044, 21425314, 21434009 and 21421061);; Ministry of Science and Technology (2013YQ190467);; the Top-Notch Young Talents Program of China
  • 语种:英文;
  • 页:SCMA201904015
  • 页数:7
  • CN:04
  • ISSN:10-1236/TB
  • 分类号:149-155
摘要
智能响应性可以将丰富的功能集成到微流体器件中;同时在刺激前后稳定的润湿区域赋予微流体器件稳定的功能表达.因此在微流体器件领域,如何构建具有多重响应的多梯度润湿表面仍然是目前面临的一个巨大挑战.本文应用原子转移自由基聚合方法在硅基底上制备聚(N-异丙基甲基丙烯酰胺)-b-(N-异丙基丙烯酰胺)-co-2-(甲基丙烯酰氧基)乙基磷酸)聚合物刷.通过对温度和pH值的控制,在聚合物表面实现了浸润性的多级梯度变化.同时,伴随着温度和pH值的变化,聚合物刷表面的粘附力也表现为多级梯度变化.这种多重响应的多级梯度变化的聚合物刷将为多功能微流体和生物分析器件的构建提供一种新方法.
        
引文
1 Stuart MAC,Huck WTS,Genzer J,et al.Emerging applications of stimuli-responsive polymer materials.Nat Mater,2010,9:101-113
    2 Wang S,Liu K,Yao X,et al.Bioinspired surfaces with superwettability:new insight on theory,design,and applications.Chem Rev,2015,115:8230-8293
    3 Zhang D,Cheng Z,Kang H,et al.A smart superwetting surface with responsivity in both surface chemistry and microstructure.Angew Chem Int Ed,2018,57:3701-3705
    4 Liu M,Wang S,Jiang L.Nature-inspired superwettability systems.Nat Rev Mater,2017,2:17036
    5 Lei S,Wang F,Li W,et al.Reversible wettability between superhydrophobicity and superhydrophilicity of Ag surface.Sci China Mater,2016,59:348-354
    6 Cui Y,Li D,Bai H.Bioinspired smart materials for directional liquid transport.Ind Eng Chem Res,2017,56:4887-4897
    7 Han H,Lee JS,Kim H,et al.Single-droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuumbased droplet manipulation.ACS Nano,2018,12:932-941
    8 Ju J,Zheng Y,Jiang L.Bioinspired one-dimensional materials for directional liquid transport.Acc Chem Res,2014,47:2342-2352
    9 Liu HL,Wang ST.Poly(N-isopropylacrylamide)-based thermoresponsive surfaces with controllable cell adhesion.Sci China Chem,2014,57:552-557
    10 Banuprasad TN,Vinay TV,Subash CK,et al.Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient.ACS Appl Mater Interfaces,2017,9:28046-28054
    11 Sun T,Wang G,Feng L,et al.Reversible switching between superhydrophilicity and superhydrophobicity.Angew Chem,2004,116:361-364
    12 Xu C,Wayland BB,Fryd M,et al.p H-responsive nanostructures assembled from amphiphilic block copolymers.Macromolecules,2006,39:6063-6070
    13 Fu Y,Jin B,Zhang Q,et al.pH-induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation.ACS Appl Mater Interfaces,2017,9:30161-30170
    14 Wang B,Guo Z,Liu W.pH-responsive smart fabrics with controllable wettability in different surroundings.RSC Adv,2014,4:14684-14690
    15 Singh S,Friedel K,Himmerlich M,et al.Spatiotemporal photopatterning on polycarbonate surface through visible light responsive polymer bound DASA compounds.ACS Macro Lett,2015,4:1273-1277
    16 Lim HS,Han JT,Kwak D,et al.Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.JAm Chem Soc,2006,128:14458-14459
    17 Xie G,Li P,Zhao Z,et al.Light-and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport.J Am Chem Soc,2018,140:4552-4559
    18 Lahann J,Mitragotri S,Tran TN,et al.A reversibly switching surface.Science,2003,299:371-374
    19 Cantini E,Wang X,Koelsch P,et al.Electrically responsive surfaces:experimental and theoretical investigations.Acc Chem Res,2016,49:1223-1231
    20 Zheng X,Guo Z,Tian D,et al.Electric field induced switchable wettability to water on the polyaniline membrane and oil/water separation.Adv Mater Interfaces,2016,3:1600461
    21 Yang C,Wu L,Li G.Magnetically responsive superhydrophobic surface:in situ reversible switching of water droplet wettability and adhesion for droplet manipulation.ACS Appl Mater Interfaces,2018,10:20150-20158
    22 Lee S,Yim C,Kim W,et al.Magnetorheological elastomer films with tunable wetting and adhesion properties.ACS Appl Mater Interfaces,2015,7:19853-19856
    23 Drotlef DM,Blümler P,del Campo A.Magnetically actuated patterns for bioinspired reversible adhesion(dry and wet).Adv Mater,2014,26:775-779
    24 Song W,Xia F,Bai Y,et al.Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film.Langmuir,2007,23:327-331
    25 Zhang X,Shi F,Yu X,et al.Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward superhydrophobic surface.J Am Chem Soc,2004,126:3064-3065
    26 Li S,Li H,Wang X,et al.Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes.J Phys Chem B,2002,106:9274-9276
    27 Miller JD,Veeramasuneni S,Drelich J,et al.Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films.Polym Eng Sci,1996,36:1849-1855
    28 Genzer J,Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers.Science,2000,290:2130-2133
    29 Feng L,Song Y,Zhai J,et al.Creation of a superhydrophobic surface from an amphiphilic polymer.Angew Chem Int Ed,2003,42:800-802
    30 Xia F,Ge H,Hou Y,et al.Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity.Adv Mater,2007,19:2520-2524
    31 Wang G,Han G,Wen Y,et al.Photo-and pH-responsive electrospun polymer films:wettability and protein adsorption characteristics.Chem Lett,2015,44:1368-1370
    32 Wang B,Liu HJ,Jiang TT,et al.Thermo-,and p H dual-responsive poly(N-vinylimidazole):Preparation,characterization and its switchable catalytic activity.Polymer,2014,55:6036-6043
    33 Xia F,Feng L,Wang S,et al.Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity.Adv Mater,2006,18:432-436
    34 Hou X.Smart gating multi-scale pore/channel-based membranes.Adv Mater,2016,28:7049-7064
    35 Yuan W,Jiang G,Wang J,et al.Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer.Macromolecules,2006,39:1300-1303
    36 Darmanin T,Guittard F.p H-and voltage-switchable superhydrophobic surfaces by electro-copolymerization of EDOTderivatives containing carboxylic acids and long alkyl chains.ChemPhysChem,2013,14:2529-2533
    37 Zhou F,Huck WTS.Three-stage switching of surface wetting using phosphate-bearing polymer brushes.Chem Commun,2005,165:5999
    38 Gilles FM,Tagliazucchi M,Azzaroni O,et al.Ionic conductance of polyelectrolyte-modified nanochannels:nanoconfinement effects on the coupled protonation equilibria of polyprotic brushes.J Phys Chem C,2016,120:4789-4798
    39 Song W,Li H,Wang C,et al.Design of multi-stage thermal responsive wettable surface.Adv Mater Interfaces,2014,1:1400009
    40 Liu H,Li Y,Sun K,et al.Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells.J Am Chem Soc,2013,135:7603-7609
    41 Jalili K,Abbasi F,Milchev A.Surface microdynamics phase transition and internal structure of high-density,ultrathin PHEMA-b-PNIPAM diblock copolymer brushes on silicone rubber.Macromolecules,2013,46:5260-5278
    42 Matyjaszewski K,Xia J.Atom transfer radical polymerization.Chem Rev,2001,101:2921-2990
    43 Song W,Sun T,Song Y,et al.An atomic force microscopic investigation of electro-sensitive polymer surface.Talanta,2005,67:543-547