SnO_2/C电极的制备及超电性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Super-electrical Properties and Preparation of SnO_2/C Electrodes
  • 作者:李苏日古嘎 ; 温凤春 ; 张益佳 ; 孙丽美
  • 英文作者:LI Suriguga;WEN Feng-chun;ZHANG Yi-jia;SUN Li-mei;College of Chemistry and Chemical Engineering,Inner Mongolia University for Nationalities;
  • 关键词:超级电容器 ; 水热法 ; 二氧化锡 ; 复合材料
  • 英文关键词:Supercapacitor;;Hydro-thermal method;;Stannic anhydride;;Composite
  • 中文刊名:NMMS
  • 英文刊名:Journal of Inner Mongolia University for Nationalities(Natural Sciences)
  • 机构:内蒙古民族大学化学化工学院;
  • 出版日期:2019-03-15
  • 出版单位:内蒙古民族大学学报(自然科学版)
  • 年:2019
  • 期:v.34;No.138
  • 基金:国家自然科学基金项目(21463017);; 内蒙古民族大学研究生科研基金(NMDSS1871)
  • 语种:中文;
  • 页:NMMS201902003
  • 页数:4
  • CN:02
  • ISSN:15-1220/N
  • 分类号:11-14
摘要
采用了水热法制备二氧化锡纳米材料,后续掺入导电碳粉制备SnO_2/C复合材料.应用X射线衍射(XRD)对样品进行了表征.采用了循环伏安法、阻抗以及恒流充放电等测试来考察样品的性能.实验结果表明:SnO_2纳米材料具有良好的超电性能,有较小的内阻,在1 mA电流下进行充放电测试,比容量达45 F·g-1.掺杂碳粉之后,当质量比为SnO_2∶C=1∶2时,比电容可达到82.12 F·g-1,说明碳粉的掺入大大的提高了SnO_2的催化性能.
        Stannic anhydrid nanomaterials were prepared by a hydrothermal method and then doped with conductive carbon powder to prepare composites of SnO_2/C.The samples were characterized by X-ray diffraction(XRD). Cyclic voltammetry,impedance and constant current charge-discharge tests were used to investigate their performance. The SnO_2 nanomaterials demonstrated good super-electrical performance and littleinternal resistance. The charge-discharge test was carried out at a current of 1 mA with a specific capacity of 45 F·g-1. After doping carbon,when the mass ratio was SnO_2∶C=1∶2,the specific capacitance could reach 82.12 F·g-1. This indicates that the addition of carbon powder greatly improved the catalytic performance of SnO_2.
引文
[1]赵雪,邱平达.蔡克迪超级电容器电极材料研究最新进展[J].电子元件与材料,2015,34(1):1-6.
    [2]刘洋.基于SnO2微纳结构超级电容器电极材料的制备及其性能研究[D].哈尔滨:哈尔滨师范大学,2015.
    [3]朱银海.氧化还原电解液在聚苯胺/二氧化锡超级电容器的应用[D].湘潭:湘潭大学,2014.
    [4]赵雪花.Sb掺杂多孔SnO2包覆MnO2的制备及用于超级电容器性能的研究[D].天津:天津大学,2013.
    [5]Lamiel C,Nguyen V H,Roh Changhyun,et al. Synthesis of mesoporous RGO@(Co,Mn)3O4nanocomposite by microwave-assisted method for supercapacitor application[J].Electrochim Acta,2016(210):240-250.
    [6]Simon P,Gogotsi Y. Materials for electrochemical capacitors[J].Nat Mater,2008(7):845-854.
    [7]姜坤,石加威,刘溪.咪唑并[1,5-a]吡啶的合成工艺研究[J].安徽科技学院学报,2018(3):70-74.
    [8]Li M,Cheng J.P,Wang J et al. The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor[J].Electrochim. Acta,2016(206):108-115.
    [9]Mei J,Zhang L.Anchoring High-dispersed MnO2Nanowires on Nitrogen Doped Graphene as Electrode Material for Supercapacitors[J].Electrochimica Acta,2015(173):338-344.
    [10]Wang P F,Liu H,Xu Y X,et al. Supported ultra-ne ruthenium oxides with speci capacitance upto 1099 Fgà1for a supercapacitor[J].Electrochim Acta,2016(194):211-218.
    [11]Yadav A.A.Spray deposition of tin oxide thin lms for supercapacitor applications:effect of solution molarity[J]. Mater Sci Mater Electron,2016(27):6985-6991.
    [12]Rakhi R B,Chen W,Chaa D,et al. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes[J].J Mater Chem,2011(27):16197-16204.
    [13]惠珂霜.SnO2的微结构制备及其在超级电容器的应用[D].上海:华东师范大学,2014.
    [14]张雅迪.SnO2、MnOOH和Bi2O3/碳布复合材料的制备及其在超级电容器中的应用与研究[D].兰州:西北师范大学,2016.
    [15]Stejskal J,Kratochvil P.Polyaniline dispersions 2.UV-Vis absorption spectra[J].Synthetic Metals,1993,61(3):225-231.
    [16]罗利军,谭学才.导电聚合物传感器的研究进展[J].分析测试学报,2005,24(4):122-127.
    [17]Moller S,Periov C,Jaekon W,et al. Electrochromic conductive polymers fuses for hybrid organic/inorganic semiconductr memories[J].Journal of Applied Physics,2003(94):7811-7819.
    [18]Moller S,Perlov C,Jaekson W,et al.A Polymer/semiconductor write-once read-many-times memory[J].Letters to Nature,2003(426):166-169.
    [19]Hunter J C.Preparation of a new crystal form of manganese dioxide:λ-MnO2[J].Journal of Solid State Chemistry,1981,39(2):142-147.