磁场对船用铝合金在模拟海水中极化行为的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Magnetic Field on Polarization Behaviors of Marine Used Aluminum Alloy in Simulated Seawater
  • 作者:李龙 ; 马保吉 ; 程培勇 ; 卢龙龙 ; 赵楠 ; 王瑞峰
  • 英文作者:LI Long;MA Bao-ji;CHENG Pei-yong;LU Long-long;ZHAO Nan;WANG Rui-feng;School of Mechatronic Engineering,Xi'an Technological University;Shaanxi Key Laboratory of Non-Tranditional Machining;
  • 关键词:船用铝合金 ; 磁场 ; 电流密度 ; 极化 ; 腐蚀
  • 英文关键词:marine used aluminum alloy;;magnetic field;;current density;;polarization;;corrosion
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:西安工业大学机电工程学院;陕西省特种加工重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:材料保护
  • 年:2019
  • 期:v.52;No.481
  • 基金:陕西省特种加工重点实验室开放基金(2017SXTZKFJG02);; 陕西省教育厅重点实验室科研项目(17JS056)资助
  • 语种:中文;
  • 页:CLBH201902003
  • 页数:4
  • CN:02
  • ISSN:42-1215/TB
  • 分类号:18-21
摘要
为了研究磁场对船用铝合金在海水中腐蚀及极化行为的影响,采用电化学测试技术对常用的船用铝合金5083、6061和6063在模拟海水中的电流密度进行了研究。结果表明:加入磁场后5083、6061和6063这3种铝合金在击穿氧化膜阶段和极化阶段的电流密度均发生了变化;在击穿氧化膜阶段,5083表现为磁场降低了其电流密度,6061、6063表现为磁场增大了其电流密度;在极化阶段,5083、6061、6063均表现为磁场提高了其电流密度。但综合击穿氧化膜阶段和极化阶段的电流密度,磁场的作用表现为提高了3种船用铝合金的电流密度,提高了材料的耐腐蚀性。
        In order to study the effect of magnetic field on corrosion and polarization behavior of marine aluminium alloys in seawater,the current densities of commonly marine used aluminium alloys( 5083,6061 and 6063) in simulated seawater were measured by electrochemical testing technology. Results showed that after loading magnetic field,the electric current densities of all the three alloys had changed during the breakdown oxide film and polarization stages. During the breakdown oxide film stage,magnetic field decreased the current density of 5083 while increased those of 6061 and 6063. During polarization stage,magnetic field could improve the current densities of 5083,6061 and 6063.Overall,based on the current density during the breakdown oxide film and polarization stages,the magnetic field could improve the current densities of three kinds of marine aluminum alloys,which improved the corrosion resistance of materials.
引文
[1]赵勇,李敬勇,严铿.铝合金在舰船建造中的应用与发展[J].船舶物资与市场,2005(2):9-11.
    [2]黄晓艳,刘波.舰船用结构材料的现状与发展[J].船舶,2004(3):21-24.
    [3]杨铁军,李国明,陈珊,等.船用铝合金点蚀及阴极保护研究[J].装备环境工程,2010,7(2):88-91.
    [4] LIU B,FANG Z G,WANG H B,et al. Surface corrosion protection technology for marine aluminum alloy[J]. Corrosion and Protection,2012,33(11):1 005-1 007.
    [5]吕战鹏,黄德伦,杨武.磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化[J].腐蚀与防护,2002,23(5):185-189.
    [6] LI L,WANG W,WANG C,et al. Effects of an applied magnetic field on the anodic dissolution of nickel in HNO3+Cl-solution[J]. Electrochemistry Communications,2009,11(11):2 109-2 112.
    [7] DIAO Z,DUNNE P A,ZANGARI G,et al. Electrochemical noise analysis of the effects of a magnetic field on cathodic hydrogen evolution[J]. Electrochemistry Communications,2009,11(4):740-743.
    [8] YUAN S J,PEHKONEN S O. AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater[J]. Corrosion Science,2009,51(6):1 372-1 385.
    [9] DU X S,SU Y J,LI J X,et al. Stress corrosion cracking of A537 steel in simulated marine environments[J]. Corrosion Science,2012,65:278-287.
    [10] YUAN S,LIANG B,ZHAO Y,et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J]. Corrosion Science,2013,74(3):353-366.
    [11] LIU Z,DONG Y,CHU Z,et al. Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulated seawater[J]. Materials&Design, 2013, 52(24):630-637.
    [12] DU X,YANG Q,CHEN Y,et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater[J]. Transactions of Nonferrous Metals Society of China,2014,24(2):570-581.